EDA Technology

Chapter S

Operators and Structural
Description Statement

5.1 Operators of Operatio

Verilog is rich in operation operators. According to the
number of operands that the operator takes, the
operation operators can be divided into the following 3
categories.

Unary operators: it can take one operand, such as logic
inversion “~", For example, ~A .

Binary operators: it can take two operands, such as AND
operation “&". For example, A&B .

Ternary operators: it can take three operands, such as
condition operator “?:"” (question mark and colon). For
example, s? a:b .

assign y= s? a:b;

s? (question mark)
This statement means:
If s==1, then y=a;
Else y=Db;

This statement 1s very important, because it refers to the
continuous assignment statement.

5.1.1 Bit Logical Operator

In addition to the logical inversion
operator “~", the bit logical operator
belongs to the binary operator.

The logical operations are performed
separately according to bits.

Table Functional descriptions and usage examples of bit logic operators
_ _ _ Logic operation Logic operation Logic operation
Logic operator Logic function

results of Aand B | resultsof Cand D | results of C and E
~ Logic inversion ~A =1l ~C =4'b0011 ~E =6'b101001
| Logic or A[B=1b1 C|D=4b1111 C|E=6b011110
& Logic and A&B=1Db0 C & D=4b1000 C & E =6'b000100
2 Logic xor A"B=1b1 C"D=4b0111 C"~E=6D011010
~™ or Mo Logic xnor A~"B=1b0 C ~" D= 4b1000 C ~"E =6b100101

Assume: A=1'b0, B=1'b1, C[3:0]=4'b1100, D[3:0]=4'b1011, E[5:0]=6'b010110

5.1.2 Logical Operator

The operators of logical operation have the following three types.
Logic AND: &&.

Logic OR: ||

Logic INVERSE: !. For example, !A=0.

\\'II

belongs to unary operators, “&&" and “||” both belong to binary
operator.

w Lab

The difference between the logic operation operator and the bit
logical operator in the above is that if the operand corresponding to
the logical operator is a bit vector, then no matter how many bits,
the output after the operation is only 1 bit.

If A=4'b1001, B=4'b0001, then:
A && B=(1/0/0|1) & (0/0/0]1)=1&1=1"b1

Besides, if a vector contains z in addition to 0, it is considered to be
logical z and has the following relations.

1&z = 1'bz, 0&z = 1'b0, 1|z =1'b1, 0|z = 1'bz

A=4'b1001, B=4'b0001

Firstly, compute 1
Second, compute 0
Finally, 1&1 =1

-

0
0

w Lab

5.1.3 Arithmetical Operator

Table Arithmetic operator functions and their examples

Logic operator

Function

Instruction

Example

+

Addition

S=A+B=_8b00011000

Subtraction

S=B- A=8bl1111110

Multiplication

S=A*B=8b10001111=2HE8F

Results: decimal

! Division) . S=A/3=8b00000100
fraction discarded
_ Division to oet :
% Remainder] S =A% 3=28Db00000001
remainder

Assume: A[3:01=4'b1101, B[3:0]=4'b1011, define S as 5[7:0]

All arithmetic operations are performed by unsigned operands, and
if they are subtractive operations, the result of output is
complemental code.

[Example]

module testl (A,B,C,D,RCD,RAB,RM1,RM2,S,C0,R1,R2);

input [3:0] C.D ;
output [3:0] RCD;
output [7:0] RM1;
output 13:01 S;
reg [3:0] S ; reqg CO;
reg [3:0] RCD ; reg [7:0] RM1 ;
reg signed [3:0] RAB; reg signed [7:0] RM2;
reqg R1,R2;

always@ (A,B,C,D) begin

RCD <= C+D ; RAB <= A+B;

RM1 <= C*D ; RM2 <= A*B;

input signed [3:0] A,B;

output [3:0] RAB;

output [7:0] RM2;
output CO; output R1,R2;

{c0,s} <= {1'b0,C} - {1'b0,D};// notice parallel connection operator

Rl <=
endmodule

(C>D); R2<=(A>B); end

0100 % 0010 0io1ii11y

[1101% 0001 #0011%1001%1011%
D100 % 0010 #Di01¥1111%
1101 0001 %D011%1001%1011%
} T 5 ¥ 45 KE 4 E K
I Y s YayE KE Wk
k54 ¥ 04 Jozf 06 ¥ 20§ as f
¥ Fa4 f 04 f0zf o5 TID Y oS f
T} 2 3 G §
o L L
oL T 1 1
Bz | L L

Figure: The simulation waveform of Example

5.1.4 Relational Operator

w Lab

Table Equality operators and their examples
Equality i]]
Meaning Equality operation example
operator
= Equal (3=4)=0, (A=4D1011)=1, (B==4D1011)=0
I= Unequal (DI=C)=1, (3!=4)=1
Identicall
i B, (D==C)=1, (E==—4'b0x10)=0
equal
Not
B identically (El==4Db0x10)=1
equal

Assume: A=5D01011, B=4'b0010, C=4'b0z10, D=4b0z10, E=3'bx 10

Table Inequality operators and their examples
Inequality ; :
Meaning Operation examples
operator
> Greater than
< t
Less than (A<B)=0, (A>B)=1
- we ﬂm:l " (A<20)=1, (A>12)=1
— (A>=14)=0, (A<=13)=1
Greater than
-
or equal

Assume: A=4'B1101, B=4'B0110

Example M Lab

module BCD ADDER (A,B,D) ;
input [7:0] A,B; output [8:0] D;
wire [4:0] DTO, DT1 ; reg [8:0] D; reg S;
always@ (DTO)
begin if (DTO[4:0] >= 5'b01010)

// If the sum of the low bit BCD codes is greater than or egqual to 10, then
//6 15 added to the sum and there is also carry,

so that the carry flag 5
//equals to 1.

begin D[3:0] = (DTO[2:0]14+4'L0110); 5=1'bl; end
else begin D[3:0] = DTO[3:0] ; S5=1"b0; end

end // Otherwise, the low bit value is assigned to the low bit BCD code D[3:0]

//and outputs without carry, so that the carry flag S is equal to 0.

always@ (DT1) begin
if (DT1[4:0]1>=5"E01010)
begin D[7:4] = (DT1[3:0]1+4'p0110); D[8]=1'bl; end
else begin D[7:4] = DT1[3:0] ; D[8]=1'k0; end
end

assign DTO A[3:0] + B[3:01 ; //Assume there is no carry from the low

Fibit

//5 15 the carry from the sum of the BCD
//codes of the low bits.

assign DT1

AfT:A4T + BIl:4) + 5;

endmodule

& & IR R ER TR T4 |

H B 24 B o 83) 15 | 46 15}{17*3&}(
{1 077 T3S R SR 030) 09 *159

Figure: The simulation waveform of the Example

5.1.6 Contraction Operators

There are six types of contraction operators, including & (AND), -&
(NAND), | (OR), ~| (NOR), ™~ (XOR), ~~, ~~ (XNOR). The
contraction operator belongs to the unary operator, and the output
result of its operation is also one bit.

For example, if A=8'b11101111, then &A=1&1&1&0&1&1&1&1=0;
this is because only when every bit of A is 1, their reduced
operation value of AND is 1.

5.1.7 Parallel Connection
Operator

If s1=1'b0, s0=1'b0, then {s1, s0}=2'b00, here the
parenthesis “{}" is the parallel connection operator. “{}”
can splice two or more signals in binary bits and use them
as a data signal.

{al, bl, 4{a2,b2}} = { al1, bl, {a2,b2}, {a2,b2}, {a2,b2},
{a2,b2}} = {al,bl,a2,b2,a2,b2,a2,b2,a2,b2}

5.1.8 Shift Operator

“>>" s a rightward shift operator, "<<” is a leftward shift operator, and
their general formats are given as follows:

V>>n or V<<n

The data in the operands or variables V is shifted to the right or left by n
bits.

For example, if V=8b11001001, then:
the value of V>>1 is 8'b01100100
the value of V<<3 is 8'b01001000

“>>>" s as the right shift operator, “<<<” is as the left shift
operator. Their general form are given as follows:

V >>> n or V <<< n

The above expressions mean that the data (signed number) in the operand
or variable V is shifted to the right or left by n bits. And for the right shift
operation, the symbol bit, that is, the highest position, is filled with the
removed bits, and the left shift operation is the same with the ordinary left
shift operator “<<”.

output signed[7:0] y;

input signed[7:0] a;

assign y = (a<<<2);

if a=10101011, then y=10101100
15 output

1f a=10001111, then y=00111100
15 output

parameter C=8'sb10101011;
parameter D=8'sb01001110;
piutpat [T:01 ¥l ¥2;

assign Y1=(C>>>2); //result:

¥1=11101010

assign Y2=(D>>>2); //result:

Y2=00010011

M Lab

5.1.9 Example of Shift

Operator

[Example] | Example |
module MULTA4E (R,A,B); module MULT4E (R,A,B);
parameter S=4; paramster S=4;
cutput[2*sS:1]1 K ; cutput [2*S:1] E;
input[s:1] A, B ; input [5:1] A,B;
reg[2*s:1] R; regl[2*5:1] R,AT;
integer 1i; reg[S:1] BT, CT;
always @ (A or B) always @(A,B)
begin begin
R =0 ; R=0; AT = {{5{1'BO}},aAl};
for(i=1; i<=S; i=i+1) BT = B; CT = 8S;
1E(Bix]) BE=BE+ (A<<(1-1)) ; for(CT=5; CT>0; CT=CT-1)
end begin 1f£(BT[1]) ER=R+AT;
endmodule AT = AT<I]; BT = BT>>1;
end
end endmodule
I IR GL R SN PR SEE SDE EE O (AR G D GE D SIS SHTEDe
5 E B 9 b4 15 b4 3 b4 3 e D 12
D0 ER PO WY KISR0 95 RR0NIe] 15 FHO RN @ ¥ © BHEZHIIsoReg 1

Figure: The timing simulation of 4-bit multiplier

Shifter

[Example]

[Example |

module SHIF4 (DIN,CLK,RST, DOUT) ;
input CLE, DIN,EST;
output DOUT;

eg [3:0) SHFT;
always@ (posedge CLE or posedge RST)
1f(RST) SHFT<=4'E(;

else begin SHFT [3]<=DIN;
SHFT[2:0] <= SHFT[3:1];
end
assign DOUT=SHFTI[0];
endmodule

module SHIFS (DIN,CLE,RST,DOUT);
input CLK,DIN,RST; output DOUT;
reqg [3:0] SHFT;
always(@ (posedge CLE or posedge RST)
1f (RST) SHFT<=4'E(0;
else begin

SHFT <= (SHFT >> 1);
SHFT [3] <= DIN;
end
assign DOUT = SHFTI[O0];

endmodule

EDA L
5.1.10 Conditional Operator

The general format of the conditional operator usage is given as
follows:

conditional expression ? expression 1: expression 2

| Example |
module DFF2 (input CLK, input D, input RST , output reqg Q);
always @ (posedge CLK)
0 <= RST 2 1'Bb0 = D;
endmodule

5.2 Continual Assignment
Statement

assign target variable name = drive expression;

When any signal variable in the driving expression on the right side of the
equal sign changes, the expression is calculated once and the obtained
data is immediately assigned to the target variable marked by the variable
name on the left side of the equal sign.

assign [delay] target variable name = drive expression;
'timescale 10ns/100ps;
assign #6 R1 = A & B;

#:number sign

[Example]

module MUX4la (A,B,C,D,S1,S0,Y);
input A,B,C,D,S51,80;
output Y;
assign AT =S0 ?2 D : C ;
assign BT = S0 ? B : A ;
wire ¥-'= (81 2 AT 2 BT);

endmodule

wire Y= (S1? AT: BT);
wire Y; assign Y= S1? AT: BT

S0
A

B _>—

= e

Dot

S1_>

L
L
L

1
AT

Figure: The RTL diagram of the Example

1s equal to

EDA L
5.3 Instantiation Statement

5.3.1 Half-adder Design

module h adder (A,B,30,C0);

input A,B;
output S0,C0;
assign SO = A ™ B; // BAfter the XOR logic is executed between variables
//A and B, the result is assigned to the ocutput signal
//30.
assign CO = A & B; //After the AND logic is executed between variables
//A and B, the result is assigned to the output signal
//co.

endmodule

5.3.2 Full-adder Design

module f adder (ain,bin,cin,cout, sum);
output cout, sum;
input ain,bin, cin;
wire netl,net2,net3;
h adder Ul(ain, bin, netl, net2);
h adder U2(.A(netl), .SO(sum), .B(cin), .CO(net3));
or U3 (cout, netl, net3);
endmodule

U h_adder i h_adder

[ai [—leur ¢]
L MCL.T petl !
| A 50 ' . A 50 ' — EOUTPUT sum
£ bin C_o—hem . | g €0 B co i
’ . cout
U114 inst U2} insth
Tein [BT net?

5.3.3 Verilog Instantiation
Statement and Its Usage

1. Port name correlation method of
instantiation statement

the general format of the commonly used port hame correlation
method is as follows:

< module component name > <instantiated component name > (.instantiation
component port (instantiation element external port name),...);

h_adder U2(.A(netl), .SO(sum), .B(cin),.CO(net3));

h_adder U2(.B(cin), .CO(net3), .A(netl), .SO(sum));

2. Instantiation statement location correlation method

There is also a corresponding way of linking expression called
“location correlation method”. The so-called location correlation is
to connect the corresponding ports based on the relevant position.

The location of signal is very important and cannot be misplaced.

h_adder (A, B, SO, CO) in Example 5-9 can no longer be changed to module
h_adder (A, B, CO, SO).

5.4 Application of Parame

Transmission Statement

Lab

er

module MULT4B (R,A,B);
parameter S5=4;
output[2*S:1] R ;
input [S:1] A,B ;
reg[2*S:1] R;

integer 1i;

always @ (A or B)

begin

R =20 ;

for{i=1; i<=S; i=+1)
1f(B[1]) R=R+(A<<(1-1));
end

endmodul e

module MULT4B (R,A,B);
parameter 5=4;
output [2*5:1)] R;
input[S:1] A,B;
reg[2*5:1] R,AT;
reg[S:1)] BT,CT;
always @ (A,B)
begin
R=0; AT = {{S{1"BO}}),A};
BT = By CT = 3;
for(CT=sS; CT>0; CT=CT-1)
begin 1f(BT[1]) R=R+AT;
AT = AT<<1; BT ET>>]1;
end
end endmodule

w Lab

To achieve this goal, the expression way of parameterin Example
5-3 should be firstly rewritten. That is to say, the top two
statements in the example module MULT4B (R, A, B) and
parameter S=4 are only needed to be rewritten into the following
forms:

module MULT4B #(parameter S=4)(R,A,B);
or: module MULT4B #(parameter S)(R,A,B);

#number sign

Bottom design Top layer design

module MULTA4B module MULTE (RP,AP,BP);

(parameter S) (R,A,B); ocoutput [15:0] RP ;
output [2*S:1] R ; input[7:0] AP,BP ;

input [S:1] A,B ; MULT4B #(.S(8))
reg[2*S:1] R; integer i; Ul(.R(RP), .A(AP), .B(BP));

//The following is the same endmodule
as example 5-3

w Lab

For example, if the module statements and parameters of the
original underlying file are expressed as:
module SUB_E

#(parameter S1=4, parameter S2=5, parameter S3=2)(A,B,C);

then in the instantiation statement, a similar statement should be
made as follows:

SUB_E #(.51(8), .S2(9), .S3(7)) U1(.C(CP), .A(AP), .B(BP));

In Verilog, there is also a parameter transmission statement similar
to parameter function, that is, defparam. Its detailed usage will be
introduced in Chapter 6 through examples.

5.5 Structural Description
with Library Component

Gate level components can be divided into 3 categories: multiple
input gates, multiple output gates, and three-state gates. There are
12 most commonly used gates, and their functions and keywords
include:

(1) There are 6 multiple input gates: AND gate and, NAND gate
nand, OR gate or, NOR gate nor, XOR gate xor, XNOR gate xnor.

(2) There are 2 multiple output gates: buffer gate buf, NOT gate
not.

(3) There are 4 three-states gates: three-state gate with high level
enabling bufifl, three-state gate with low level enabling bufif0,
three-state non-gate with low level enabling notif0, three-state non-
gate with high level enabling notif1.

module LOGICGATE (input A,B,C,S ,

wire al,aZ2,a3, a4;
not ul (al,B);
and uZ2 (a2,h,al);
or: uE @3 8B ;
xor ud (ad,a3,a?);
notifl us (OOT.ad,8);
endmodule

The format of invoking gate element is:

output OUT);

Component name of basic gate <gate instantiation name> (<Port correlation list >)

u2
A———
B>—1—10

u4

u3

T)>

S

>OUT

I0_BUF (TR}

Figure: The logic circuit described in Example 5-13

w Lab

The instantiation statements of 3-input AND gate and 2-input AND gate are as follows:

and U1 (out,in1,in2,in3); //3-input AND gate, and the instantiation name is U1l

and U2 (out,inl1,in2); //2-input AND gate, and the instantiation name is U2
For the three-state gate, the input/output ports are listed in the following order, for example:

bufifl Ul(out,in,enable); //three-state gate with high level enabling

bufif2 U2(out,a,ctrl); //three-state gate with low level enabling

As for the invoking of two components buf and not, it should be noted that they allow
multiple outputs, but only one input, for example:

not IC1 (outl,out2,in); //1 input in, 2 output outl,out2
buf IC2 (outl,out2, out3,in); //1 inputin, 3 output outl,out2, out3

5.6 Compiling Directive
Statement

In the expression way of program, the compiling directive
statements and the macro names that have been defined begin

with the symbol ™"

Verilog provides muItipIe compiling directive statements, such as
macro definition statement ‘define, conditional compilation
statement Jfdef, ‘else, ‘endif, restall, etc.

The most commonly used statements are ‘define, ‘include, 'ifdef,
else and ‘endif.

": apostrophe

5.6.1 Macro Definition
Statement

The general usage format of define statement is:
'define macro name (identifier) macro content (string)

'define s A+B+C+D

“assign DOUT='s + E” is equivalent to the statement “assign
DOUT = A+B+C+D+E;”".

w Lab

The specific application of ‘define should also be noted
that:

(1) A semicolon is not added to the macro definition
statement at the end of the line.

(2) When a defined macro name is quoted in a program,
the symbol ™" must be added to the identifier that
defines the macro name to show that the identifier is a
macro definition name.

5.6.2 File Inclusive
Statement, include

The function of the file inclusive statement ’nclude is to
include all of a file in another file, and its format is:

'include "file name"

"": double quotation marks

"apcliude *h adaer.y”
'include "or2a.v"

module f adder(input ain,bin,cin,output cout,sum);

wire e,d,f ;
h adder wul(ain, bin, e, d);
h adder u2(.a(e), -.so(sum); .b(cin),.co(f));
orda ud(.a(d), .blf), .clcoat));
endmodule

w Lab

When using a file inclusive statements, it should be noted that:

(1) a ’nclude statement can only specify a contained file, giving full
name and suffix in the statement.

(2) The ’include statement can appear anywhere in the program.

(3) If the included file is not in the folder where the current project
is located, it must indicate the path of the file. For example, 'include
"e:/ADDER/h_adder.Vv".

(4) The file inclusion of the ‘nc/ude statement allows multilevel
inclusions. For example, file 1 contains file 2, file 2 contains file 3,
etc.

(5) Different compilers and synthesizers have different
requirements on ‘nc/ude statements, so they need to be treated
differently.

5.6.3 Conditional Compilation
Statement, ‘ifdef, ‘else, ‘endif

The function of conditional compilation
command statement ‘ifdef, ‘else and ‘endifis to
direct synthesizer to make the part specified in
the statement participate in the Verilog source

program and be compiled and synthesized
simultaneously.

w Lab

Format 1 of conditional

statement

compilation command

of conditional

Format 2
statement

compilation command

"1fdef macro name

statement block
'endif

'ifdef macro name
Statement blockl
‘else statement block2
'endif

Format 1: If the macro
name 1S defined in the
program, the statement
block 1s executed.

Format 2: If the macro
name 1s defined 1in the
program, the statement
block 1 1s executed,
otherwise statement block?2
1S executed.

Al1.0
B1..0) [-

'define AND
module andd {(out,A,B);
input[1:0] A,B;
oitput [1:0] out;
'ifdef AND
assign out=A&B;
'else assign ocut=A|B;
'endif
endmodule

out~1

out~0

[>»out[1..0]

'define OR1
module andd (out,A,B);
input[1:0] &A,B;
output: [1:0] oukt;
'ifdef AND
assign out=A&B;
'else assign out=A|B;
'endif

endmodule
out~1
Al 0|C—e—
B[1..0] [
out~0

uE[1..0]

5.7 Application of Attribute
of Keep

Sometimes the designer hopes that, without increasing the signal
connection that is not related to the design, the signal changes in a
data channel defined within the module can also be understood in
detail in the simulation, such as the signal net3 in Example 5-10.

However, because this signal is a temporary signal or data channel
inside the module, it is simplified and removed after the logic
synthesis and optimization, so the signal cannot be found in the
simulation signal, and cannot be observed in the simulation
waveform.

The keep attribute can be used to solve this problem.

module ff adder(ain,bin,cin,cout,sum);
output cout, sum ; input ain,bin,cin ;
(* synthesis, keep *) wire net3 ;
wire net2,netl ;

//The following is the same as that of example 5-10

(* synthesis, keep *) or (* synthesis, probe_port, keep *)

€4 Node Finder

Named: =

Lookin: =

Nodes Found:

Filter: [Post—synfmesis

m

Selected Nodes:

E I List] [Cancel

MName Type . Na'me Type
CD ain~input Combinational i”D ain Input
n_ bin Input in_ bin Input
.c;, bin~input Combinational 1 i”;. cn Input
in_ cn Input ‘ M cout Output
_CD dn~input Combinational |E 4 sum Cutput
4 cout Output ‘ _c_-> net3 Combinational
*., cout~output Combinational |
S, net3 Combinational N
24 sum Output =

Figure: The addition of the simulation testing signal

net3

MName
g ain
i bin
o cin
qut cout
qut sum
.C_-> net3

00.0ns 520.0ns 540.0 ns =)
' \ '

Figure: The simulation waveform of Example 5-17

(* synthesis, probe_port, keep *) wire net3;

For vector signals, such as A[7:0], it can be defined as
follows:

(* synthesis, probe_port, keep *) reg [7:0] A;

5.8 Usage of SingalProbe

In the process of hardware testing for FPGA development projects,
in order to understand one or some of the signals within a design,
the usual way is to add some external elicited ports, and to bring
these internal signals to the outside for testing. These pin settings
are deleted after the end of the test.

However, the disadvantage of this approach is that the layout of
the original design has been changed when leading the pin only to
use for testing, and the system function after the deletion of these
pins may not be able to return to the original functional structure.

For this purpose, the SignalProbe signal detection function of
Quartus II can be used to extract the internal signals needed by
users from the FPGA, using the idle connections and ports in the
FPGA without changing the original design layout.

w Lab

This function is different from the use of the keep attribute. Using
the keep attribute simply tells the synthesizer not to optimize a
signal, so that it can be invoked to observe in the simulation file.
The use of SignalProbe detection function is to transmit the
specified internal signals which does not belong to the port to the
external of the device for testing. Of course, sometimes it must be
combined with the application of keep attribute, so that SignalProbe
can measure some internal signals that may be optimized on the
device port.

1. Completing the designh simulation
and hardware test according to the
routine process

2. Setting up SignalProbe Pins

3. Compiling SignalProbe Pins test
information, downloading and
testing

€ SignalProbe Pins [

2 |
ion
SignalProbe pins allow you to pull out an internal signal to a pin without changing your design or running a full compilation.
Z Source Mumber of Register Register Add...
Fitil Node Name Pl ocabon Emfeme Registers Clock Reset
#J Add signalProbe Pin [= ‘1
{'€ Nade Finder [=]
Source node mame: pagy
Pin location: PIN AA3 1
SignalProb 2
ignalProbe pin name: TEST net3 e
QP Fiter: [Post-synthesis

SignalProbe compil

SignalProbe pins o
Check & Save A

Pipeline registers

Number of registers: 0

'] ICusmmize‘..]

Lookin: |f_adder|

lodes Found:

v [] @] Include subentities

Selected Nodes:

Hierarchy view

Clock signal:

Na‘ma Assignments
Reset signal: c_} net3

Unassigned

" Click OK to add SignalProbe Dg sum

— I h_adder:U2
< i «
ted file £ add ‘ ‘ E Il

Figure: Setting the probe signal net3 in the
SignalProbe dialog box

m | »

£J SignalProbe Pins |

2
SignalProbe pins allow you to pull out an internal signal to a pin without changing your design or running a full compilation.
z Source z 2 = Mumber of Register Register Add...
Enabled Node Name AREEILE L Hame Registers Clock Reset
net3 PIN_AA3Z TEST_net3 0

< |

n

SignalProbe compilation

SignalProbe pins are created using engineering change orders (ECOs). To create a new SignalPraobe pin or change an existing SignalProbe pin you must dick
Check & Save All Netlist Changes.

[Start Check & Save All Netlist Changes] | 0%

Figure: The settings of SignalProbe Pins dialog box

