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Accuracy of the Single-mode Model of Controlled Release from Hollow
Porous Nanospheres

Brian J. Edwards, *1 Aili Wang,2 Carl N. Edwards 1 and Hengbo Yin2

The kinetics of diffusion-controlled release from hollow nanoporous spheres of varying thickness were recently investigated using classical mass transport theory.

A new model, expressed in terms of a single diffusive mode, was developed to describe the time-dependent mass transport of a loaded chemical species through

the nanosphere shell based on physically reasonable boundary and initial conditions, as well as an assumption of monotonicity during the approach to steady-state

diffusive behavior. The purpose of this communication is to demonstrate the validity of these assumptions in the long-time limit and to estimate the error associated

with the short-time transport. To this end, the kinetics of the single-mode model are compared with a full solution to the time-dependent diffusion equation obtained

using numerical techniques, which demonstrates the utility of the single-mode model for all but the initial moments of the transport process. As a result, it is evident

that the single-mode model, which expresses the diffusion of the solute from the nanospheres in terms of a single, universal time constant, is a valid approximate

model for describing diffusion in these nanoporous systems for controlled release applications.
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Controlled-released chemical delivery is currently a very active area
of research in the fields of medicine, agriculture, chemistry, and
materials science.1–6 The primary purpose of controlled-release tech-
nology is to enhance effectiveness by delivering a prescribed dosage
of a chemical over a prolonged period of time, rather than all at once.7,8

The principal objectives of controlled-release systems are (1) to maintain
a constant and long-term release rate, (2) to achieve a predetermined
concentration level over a specified period of time, (3) to deliver a
chemical to the target site of application, (4) to assist the chemical
in crossing physiochemical barriers, and (5) to protect the chemical
from premature elimination by the host. Hence controlled-release tech-
nology is currently studied in the agricultural, pharmaceutical, biomedical,
and food industries as a potentially beneficial technology for herbicides,
pharmaceuticals, fertilizers, and other targeted chemical applications.9–14

Chemically loaded nanosphere materials are actively being researched
as controlled release carriers because of their high specific surface area
and nanoporous structure;15–24 hollow nanosphere materials are particularly
interesting because they exhibit a very high chemical loading capacity
and allow for efficient transport into and out of their hollow interior
cores.25–30 Modelling diffusion through these hollow nanoporous
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materials has thus become a critical subject in advancing this new
technology so that a complete understanding can be gained of the
physiochemical mechanisms that control the chemical transport through
the nanosphere walls, based on relevant parameters such as shell
thickness and porosity. Although a large body of theoretical methodology
for modelling controlled release kinetics in general systems has been
developed over the previous decades,31–37 this technology has not yet
been fully applied to hollow nanosphere materials, primarily because
of the relative newness of the application.

In a recent publication,38 Wang and Edwards developed a model for
the controlled release of the agrichemical glyphosate from hollow
silica nanospheres of various diameter and porosity. This model was
expressed in terms of a single diffusion mode, which represented the
longest length and time scale mode of an infinite series expansion of
the full solution to the partial differential equation (PDE) for diffusion
from hollow spherical media. The basis of this single-mode solution
was that only the longest mode satisfied the requisite physical con-
straints in the approach to an eventual steady state. In terms of a single
diffusive mode, a natural (and exact) solution of the diffusion PDE re-
vealed a universal scaling and a single time constant for the diffusive
process, which matched very well the long-time experimental data for
release of glyphosate from nanosphere systems possessing a range of di-
ameters and porosities. The issue that remains, which this communication
intends to address, is whether this single-mode diffusion model is an accu-
rate enough representation of the short length and time scale diffusion be-
havior of these systems as compared to a full multimode solution
Eng. Sci., 2018, 3, 41–47 | 41
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comprised of an infinite series of diffusional modes. To reach a definitive
conclusion, a series of numerical calculations were performed on the diffu-
sion PDE to obtain multimodal solutions, as far as known boundary and
initial conditions can be ascribed, which were then compared with the pre-
dictions of the single-mode model of Ref. 38.

Experiments were conducted on four different silica nanosphere
systems, each loaded with 0.237 g of glyphosate via an impregnation
method.38–42 Table 1 provides details of the dimensions and physical
parameters of these four nanoporous materials made using standard
characterization techniques. Fig. 1 (left panel) shows a typical
transmission electron microscopy (TEM) image of one of the nanosphere
systems used in the experiments. Deviations from the average values
reported in Table 1 were found to be less than 7%.38,42 Fig. 1 (right
panel) also displays the released mass fraction of glyphosate from the
four samples as a function of time after the samples were dispersed in
1000 ml of distilled water. After a short initial induction period where
the release rate of glyphosate was relatively rapid, the released mass
fraction decelerated and eventually plateaued as the diffusional driving
force between the nanospheres and the solvent vanished.

The physical system of controlled release from a dispersion of hollow
nanospheres can be modelled based on the diffusion from a single
particle expressed in terms of a partial differential equation of mass
transport through the shell of the sphere. Assuming that diffusion of
the solute through the shell is the rate-limiting process (i.e., the re-
lease rate from the outer surface of the shell to the surrounding sol-
42 | Eng. Sci., 2018, 3, 41–47

Table 1 Specific surface area, specific pore volume, average inner shell radius (a),
outer shell radius (b), and shell thickness (Δr) for the four nanosphere samples.

Sample
Surface area

(m2/g)
Pore volume

(cm3/g)
a

(nm)
b

(nm)
Δr (nm)

A 176.8 0.265 161.8 183.8 22.0
B 123.3 0.218 164.3 188.5 24.2
C 84.49 0.189 163.9 190.9 27.0
D 76.11 0.144 170.6 203.4 32.8

Fig. 1 Typical TEM image of the hollow porous silica nanospheres (Sample D) us
dispersed nanosphere samples versus time (right panel).
vent is relatively fast as compared to diffusion through the porous
shell, corresponding to a small mass transfer resistance at the outer
shell surface), the diffusion equation for this system is unambiguously
expressed as43

ð1Þ

where C(r, t) is the concentration of solute within the shell, which
is a function of the radial coordinate, r ∈ [a, b], and the time,
t ∈ [0,∞), and D is the (constant) pseudo-binary diffusion coefficient
for transport of the solute between the inner surface (located at co-
ordinate r = a) and outer surface (r = b) of the nanosphere shell. In
terms of a dimensionless concentration,

ð2Þ

which assumes values lying within the range of 0 ≤ θ ≤ 1 over
r ∈ [a, b], Eq. (1) becomes

ð3Þ

where C0 ≡ C(a, 0) is the concentration of solute at the inner shell
surface at the initial instant and C∞ ≡ C(b,∞) is the concentration
at the outer surface in the infinite time limit; i.e., once the diffusive
process has completely decayed away. If no mass transfer barrier were
to exist at the interface of the outer shell and solvent, and assuming an
infinite bath of solvent, C∞ ≡ 0 and furthermore C∞ ≡ C(b, t) at all in-
stants in time. However, given the nanoporous nature of the silica
spheres, an osmotic pressure differential might exist such that C∞ ≠ 0.
© Engineered Science Publisher LLC 2018
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Nevertheless, when expressed in terms of dimensionless concentration,
several boundary and initial conditions can be deduced as a bare mini-
mum to begin the solution of Eq. (3). These are

ð4Þ

The concentration of solute within the core (hollow center) of the
spheroid is assumed to be homogenously distributed, and hence no ra-
dial variation exists for r < a. Unfortunately, the conditions of (4) are
insufficient to obtain a fully general solution to PDE (3). In order to
derive such a solution, two more conditions are necessary.

The first necessary condition is a mathematical expression for the
dimensionless concentration at the inner surface as a function of time;
i.e., θ(a, t) = ϕ(t). Another key point is that the total amount of
glyphosate within the nanospheres is not concentrated exclusively
within the cores at t = 0, but is also contained within the pores of
the nanosphere shells. Therefore, one must also have knowledge of
the concentration profile throughout the shell at the initial instant,
θ(r, 0) = ξ(r). (Note that one could also possibly formulate a problem
in terms of Neumann or Robin boundary/initial conditions, but the es-
sential arguments here are unchanged.) With these additional condi-
tions complementing the conditions of (4), a completely general yet
unique solution to PDE (3) can be derived, as discussed (for the analo-
gous case of heat conduction from a hollow sphere) by Carslaw and
Jaeger.44 Unfortunately, definitive mathematical expressions for nei-
ther of these two additional conditions can be determined from ex-
perimental measurements or physical arguments.

Given the ambiguity noted above in the functions ϕ(t) and ξ(r),
it is unsurprising that a number of solutions to PDE (3) have been pro-
posed over the years, each corresponding to simple choices for these
functions. These solutions typically turn out to be infinite series ex-
pansions expressed in terms of diffusive modes, such as
(5)
which corresponds to the solution of PDE (1) when one assumes
that C(r, 0) = ξ(r) = C1 and C(a, t) = C(b, t) = ϕ(t) = C2, where C1

and C2 are constants.43 Obviously, this choice of the two functions
ϕ(t) and ξ(r) is not physically relevant to the current system, but re-
gardless, this generic form of the solution carries through to other
particular solutions of the diffusion PDE based on alternative choices
for ϕ(t) and ξ(r), all of which involve an infinite series expansion in
terms of individual diffusive modes.

Expressions such as Eq. (5) are only as accurate as the boundary
and initial conditions that were used to derive them; however, it is
very interesting to observe the consistency between the various par-
ticular solutions corresponding to different sets of boundary and ini-
tial conditions. These solutions tend invariably to contain an infinite
series expansion in terms of both an exponential time decay function
and a periodic trigonometric function of the spatial coordinate. The
reason for this is clear: PDE (3) is separable in terms of two single
© Engineered Science Publisher LLC 2018
variable functions, θ(r, t) = F(t)G(r), such that (3) can be split into
two independent contributions,

ð6Þ

each of which must be equal to the same undetermined constant,
herein set to −λ2D for subsequent convenience. The first equation yields
an exponential function and the second results in a trigonometric one.
For the exponential function, the time constant of the series scales
with the square of the mode number, (n2), which indicates that the in-
dividual modes decay much faster as the mode number increases. This
implies that most of the modes die out during the initial moments of a
typical experiment, leaving only the longest mode playing a role at the
approach to steady-state behavior. As for the trigonometric function,
for mode numbers larger than unity (n > 1), the concentration profile,
even at steady state, will involve multiple periods in which the spatial
variation of concentration can be both positive and negative, and have
a slope which can also be both positive and negative. This implies that
within certain spatial regions, mass is diffusing contrarily to the applied
global concentration gradient, in contradiction of Fick’s Law. Although
such an occurrence could be possible based on the imposed initial and
boundary conditions in the initial stages of the solution to PDE (1), this
sort of behavior should be considered unphysical as the system ap-
proaches a steady state in the long time limit.

In response to these issues, Wang and Edwards38 derived a new
kinetic model based on PDE (1) involving only a single diffusive mode
under the premise that the longest relaxation (diffusion) mode governed
the diffusive process over most of the experimental timescale. Under
this constraint, a solution to PDE (3) was derived as (see the Sup-
plementary Material of Ref. 38 for the explicit derivation)
ð7Þ

which provides a quantitative profile of the concentration throughout
the spherical shell as a function of space and time. In this expression, λ is
a purely geometric scaling parameter defined as

ð8Þ

The solution (7) was obtained using the boundary and initial condi-
tions of Eq. (4), effectively supplemented by the expressions
Eng. Sci., 2018, 3, 41–47 | 43



Fig. 2 Scaled retained mass fraction as a function of time. Symbols denote the
scaled experimental data and the solid line is a fit of the data as computed from
the average value of the diffusive timescale (2,000 s).
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ð9Þ

When solving PDE (3) according to the boundary and initial con-
ditions of (9), a fully general solution would yield an infinite series
composed of only the odd integer modes. In this situation, the first
(the longest) exponential in the expansion is nine times (n2 = 9)
larger than the second exponential, twenty-five times larger than the
third, and so on. Consequently, other than during the initial moments
of the process, the first term of the expansion should dominate the
overall diffusive process.

Integration of the concentration profile resulting from Eqs. (2)
and (6) from the center of the core to the outer shell surface allowed
calculation of the cumulative retained and released fractions of solute as
functions of time according to

ð10Þ

and

ð11Þ

in which MC(t) is the mass remaining in the sphere at any instant in

time, is the initial mass within the sphere at t = 0, and

is the steady-state mass of solute retained within the

core/shell; i.e., the long-term release limit (as t → ∞). [Note that in the
Supplementary Material of Ref. 38, a typo appeared in Eq. (S.27);
however, this typo did not affect any of the subsequent equations
or analysis. For completion, a corrected version of that equation is
presented in the Appendix of this communication.]

A key observation from Eq. (10) is that a scaled retained mass
fraction can be derived as

ð12Þ

which is expressed in terms of single characteristic timescale,
τ ≡ (λ2D)−1, that dictates the kinetics of the time-release process.
Such an expression is a direct result of the fact that the solution
to PDE (3) was expressed in terms of only a single diffusive mode
and the fact that the solution is separable with respect to space and
time, hence implying that the product λ2D is a constant of integration.
The utility of this scaled expression is that it removes the effects of the
initial and long-term concentrations from the retained mass fraction
profile, thus allowing the various nanosphere systems to be compared
solely on the basis of their underlying kinetics. Furthermore, Eq. (12)
explicitly shows that, in a process governed by only the longest relaxa-

Communication
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tion mode, the product λ2D should be a universal constant indepen-
dent of the geometry (λ) or porosity (and hence the diffusion coeffi-
cient, D) of the nanosphere system. This represents a very important
conclusion, which was evidently borne out by the available experi-
mental data.38

The experimental data of the retained mass fraction is plotted in Fig. 2
according to the scaled mass fraction of Eq. (12). As evident in the
figure, time-release data of all four systems mostly collapse onto a
common curve when expressed in scaled form with a universal time
constant of 33.3 min or 2,000 s.38 This universal fit describes the
data reasonably well quantitatively over the entire time period, al-
though the fit at short times over predicts the actual data, which are
likely multimodal, and causes an associated under prediction at later
times in the unimodal exponential profile. The universal timescale can
be decomposed into the diffusion coefficient and geometric parameter
for each nanosphere system; these values are collected in Table 2.

Equations (10) and (11) can be used to rescale the data of Fig. 2; a
graph of the unscaled retained mass fraction is presented in Fig. 3. In this
plot, there remains evidence of either a multimodal solution or a second
mass transport mechanism at small time values; however, in general,
the single time constant assumption appears to serve adequately to
represent the available data. The remaining questions, therefore, are
to what extent a multimodal solution can correct for the short time
deviations from unimodal behavior and what is the error associated with
neglecting the higher-order diffusive modes over the entire time duration
of the experiments? These are the primary questions to be investigated in
this communication.

PDE (3) was solved subject to boundary and initial conditions
(4) within the MATLAB numerical computing environment using
the pdepe function, which solves initial/boundary value problems
involving parabolic/elliptic PDEs. PDE (3) was solved for constants
a, b, and D using two 1-dimensional arrays, one for the spatial coor-
dinate (r ∈ [a, b]) and one for the temporal coordinate (t ∈ [0,
7200 s]). In addition to conditions (4), two independent cases of
© Engineered Science Publisher LLC 2018



Table 2 The product λ2D, the effective diffusive time constant, τ, the geometric pa-
rameter, λ, and the diffusion coefficient, D, of the four nanosphere samples.

Sample λ2D (min-1) τ (s) λ (nm-1) D (cm2/s)

A 0.03 2,000 0.0714 9.80 × 10−16

B 0.03 2,000 0.0649 1.19 × 10−15

C 0.03 2,000 0.0582 1.48 × 10−15

D 0.03 2,000 0.0479 2.18 × 10−15
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auxiliary conditions were examined. In the first (Case I), auxiliary
conditions (9) were employed, which are consistent with the single-
mode diffusion model of Wang and Edwards.38 In the second (Case
II), in lieu of any physical rationale or theoretical expectation, the
initial concentration profile within the nanosphere shell was arbi-
trarily set to the constant value C0, implying a uniform concentra-
tion profile θ(r, 0) = ξ(r) = 1 across the shell diameter (a ≤ r < b)
at t = 0. At the initial instant, at the outer surface θ(b, 0) = 0, with
the boundary condition θ(b, t) = 0 subsequently active at all times.
In this way, the pdepe function could determine the most appropri-
ate fit to the boundary and initial conditions compatible with a
multimode solution to PDE (3) by integrating inward to the inner
surface at r = a. (Explicit details of the pdepe function can be found
in the online MATLAB documentation.45) Any solution thus
obtained was mandated from the separability of PDE (3), as
displayed in Eq. (6), to possess an exponential time character and a
periodic trigonometric spatial dependence at r = a. Accordingly,
time-dependent concentration profiles in terms of either C(r, t) or
θ(r, t) were computed over the relevant parameter space [a, b,D].
The retained mass at any instant of time, MC(t), was calculated from
the computed concentration profiles using the theoretical expression
© Engineered Science Publisher LLC 2018

Fig. 3 Plot of unscaled retained mass versus time. Symbols represent the
experimental data and solid lines were generated using the common time constant
of 2,000 s in Eq. (10).
Accordingly, the scaled retained mass fraction can be expressed
in terms of θ(r, t) as

ð14Þ

which can be evaluated numerically using the trapezoidal method.
The dimensionless concentration surface, θ(r, t), is plotted in 3-

dimensional format versus the spatial (r) and temporal (t) coordinates
for Sample A (a = 161.8 nm, b = 183.8 nm, D = 9.80 × 10−16 cm2/s)
in the upper panel of Fig. 4. These data were obtained by solving PDE
(3) using the MATLAB pdepe function, as described above, subject to
conditions (4) supplemented with the uniform initial concentration pro-
file θ(r, 0) = ξ(r) = 1, corresponding to Case II. At the initial instant, the
concentration profile is constant throughout the shell, as required,
dropping precipitously to θ(b, 0) = 0 at the outer shell surface; i.e., a
Heaviside function. For later times, the profile gradually decays to the
uniform steady-state condition θ(r,∞) = 0 at long times.

A more quantitative analysis can be achieved by plotting the
same data in 2-dimensional format (the lower panel of Fig. 4) using
spatial profiles of θ(r, t) at specific instants of t (Case II: solid lines).
Also displayed in the lower panel of Fig. 4 are the predictions of
the single-mode model (Eq. (7): dashed lines) at the same instants
in time used for Case II. [The Case I solution of the full PDE (3)
yields essentially equivalent predictions to those of the single-mode
model, demonstrating that the numerical solution to PDE (3) de-
faults to the single-mode solution under application of the appropri-
ate boundary/initial conditions, as it should.] The general Case II
solution decays rapidly from its initial Heaviside function at t = 0 to
a monotonically decreasing profile, which assumes a sine function
(13)
behavior after approximately 7 minutes have elapsed. In fact, at
t ≈ 7 min, the fully general solution matches quite closely the
single-mode model prediction at t = 0. Furthermore, for all t > 7 min,
the general Case II solution tracks quite closely the single-mode
model with a lag time of approximately 7 minutes. As time ulti-
mately becomes long, both solutions essentially decay away to the
long time solution θ(r,∞) = 0 with absolute error between the two
cases approaching zero with increasing time. Given that the two
cases start with vastly different initial concentration profiles across
the shell (i.e., one is constant whereas the other is given by the si-
nusoidal function of Eq. (9)), this behavior is remarkable. What it
implies is that the higher-order temporal diffusion modes in the
multimode solution rapidly decay, leaving the kinetics controlled pri-
marily by only the longest diffusional mode, which is the only mode
present in the single-mode model. Consequently, regardless of the ini-
tial concentration profile used as an initial condition on the multimode
solution to PDE (3), this solution rapidly decays to the solution pro-
vided by the single-mode model.
Eng. Sci., 2018, 3, 41–47 | 45



Fig. 4 Three-dimensional plot of θ(r, t) versus spatial coordinate (r) and
temporal coordinate (t) for Sample A (upper panel). The concentration profile is
plotted 2-dimensionally in the lower panel in terms of the spatial coordinate at
specific instants of time, as indicated in the legend. Note that solid lines corre-
spond to Case II (the general multimode solution) and dashed lines correspond to
the single-mode diffusion model, Eq. (7). Note that data at times 35, 49, and 56
minutes have been excluded from the graph for clarity.

Fig. 5 Scaled retained mass fraction versus time for the four samples (data
points) compared to the multimode solution (solid line) and the single-mode
model (dashed line).
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The scaled mass fraction as a function of time of the multimode
solution is calculated by integrating the concentration profiles of Fig. 4
over the 3-dimensional spatial coordinates according to Eq. (14), whereas
this quantity can be determined for the single-mode model directly from
Eq. (12). These two cases are plotted alongside the experimental
data for all four samples in Fig. 5. As evident from the figure, for
long times (t > 30 min), the two cases essentially coincide, indicating
that the approach to steady-state behavior is exactly the same. Fur-
thermore, even for t < 30 min, there is very little relative error, less
than 10% at its maximum value. The multimode solution has the
higher value since there is more area under the concentration curve
of Fig. 4 at t = 0 for the multimode solution than the single-mode
model, which implies a larger integral value. Therefore, it is no sur-
prise that for small time values the single-mode model underpredicts
the multimode solution. However, the small relative error between
the two cases once again vindicates the assumption of single-mode
behavior due to the rapid damping of the higher order temporal
modes of the fully general solution.
46 | Eng. Sci., 2018, 3, 41–47
Interestingly, the multimode solution does not explain the issue with
overprediction of the short time behavior of the experimental data; in-
deed, it actually enhances the overprediction by shifting the integral
upward instead of down. Consequently, this overprediction cannot be
caused by the neglect of higher-order diffusional modes, and therefore
it must be due to a secondary diffusional process (i.e., a second mass
transport mechanism) that is not captured by PDE (3). Wang and
Edwards38 hypothesized that this rapid decay of the scaled retained
mass fraction at small time values was caused by a relatively rapid
(with respect to diffusive transport) release of excess solute initially
absorbed on the surface of the nanospheres upon exposure to the
solvent. In other words, they conjectured that not all of the glyphosate
was absorbed inside the nanospheres during the chemical loading
phase, and that this excess material rapidly solvated upon dilution
into the solvent. This explanation is still reasonable, based on the
conclusions of the present analysis.

Having determined the limitations on the accuracy of the single-
mode model with respect to the fully multimode solution, it can now
be more confidently employed as a modeling tool for controlled release
studies of agrichemicals and pesticides from hollow porous nano-
sphere systems. As demonstrated above, the primary limitation of
the single-mode model is the description of the short time behavior;
however, the multiple-mode behavior quickly decays to the longest
diffusional mode over the initial stages of a controlled release applica-
tion. Use of the model was illustrated for several interesting nano-
sphere systems in prior work.38
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