Supporting Information

Zinc Stannate Nanorod as an Electron Transporting Layer for Highly Efficient and Hysteresis-less Perovskite Solar Cells

Mohammad Mahdi Tavakoli,^{1,2}* Daniel Prochowicz,³ Pankaj Yadav,⁴ Rouhollah Tavakoli,¹ Michael Saliba⁵

¹Department of Materials Science and Engineering, Sharif University of Technology, 14588 Tehran, Iran.

²Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA

³Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland

⁴Department of Solar Energy, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar-382 007, Gujarat, India

⁵Adolphe Merkle Institute, Chemins des Verdiers 4, CH-1700 Fribourg

* Corresponding author: <u>mtavakol@mit.edu</u>

Fig. S1. Top-view SEM images of ZSO nanorod ETL deposited on glass with non-stoichiometric precursor concentration using USP method with low (a) and high (b) magnification.

Fig. S2. X-ray diffraction pattern of ZSO nanorod ETL deposited on glass.

Fig. S3. Absorbance spectra of MAPbI₃ perovskite film deposited on glass.

Fig. S4. Dark current measurement of PSCs based on planar and nanorod array ETLs.