Supporting information for

In situ preparation of WO3/g-C3N4 composite and its enhanced photocatalytic ability: a comparative study on the preparation methods of chemical composite and mechanical mixing

Zengying Zhao*, Ma Hua*, Mingchao Feng*, Zhaohui Li**, Dapeng Cao***, Zhanhu Guo****

*School of Science, China University of Geosciences, 29 Xueyuan Rd, Beijing 100083, Peoples R China.

**Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China

***Department of Geosciences, University of Wisconsin - Parkside, Kenosha, WI 53141-2000, USA

****State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China

*****International Research Center of Soft Matter, Beijing University of Chemical Technology, Beijing 100029, PR China

******Integrated Composites Laboratory (ICL), Chemical and Biomolecular Engineering Department, University of Tennessee, Knoxville, TN 37996, USA

E-mail: zhaozy@cugb.edu.cn
Fig. S1: Thermogravimetric analysis results of chemical composite samples

Fig. S2: The EDX of chemical composite sample 3WN shows that WO$_3$ and C$_3$N$_4$ are both detected in the sample (a), while the EDX mapping of mechanical mixing sample 3W–N shows that WO$_3$ and C$_3$N$_4$ are mainly departed from each other in the sample (b).
Fig. S3: (a-d) high resolution XPS spectra of C1s, N1s, O1s, and W4f of mechanical mixing sample 3W--N.