
Energy-Mass Duality of Heat and Its Applications

Heat conduction in a medium can be modelled as the motion of a weighty phonon gas in a dielectric based on the concept of thermomass. 

Newtonian mechanics has then been used to establish the momentum equation for the phonon gas, which is the general conduction law and 

it degenerates into various heat conduction models for the appropriate simplified conditions. These phenomena show that heat has energy-

mass duality, that is, heat acts like energy during its conversion with other forms of energy and then acts like mass during its motion. 

Furthermore, the general relation between the heat flux and the temperature gradient can be derived from the Boltzmann transport equation 

for phonons. In the high heat flux case the thermal conductivity for nano-materials calculated based on Fourier’s law is the apparent 

thermal conductivity, which is less than the actual intrinsic thermal conductivity. A more general heat conduction model for nano-systems 

is then presented. Finally, the quantity, entransy, is introduced based on an analogy between heat conduction and electric conduction, which 

is a simplified expression of the thermomass potential energy. The principle of minimum entransy dissipation-based thermal resistance can 

be used for optimizing the heat transfer process to increase the energy efficiency.
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1. Introduction
Heat transfer, a branch of general physics, has been well developed 

and widely applied in various engineering fields. However, the 

development of new high-tech applications has presented many new 

challenges for the heat transfer discipline. For example, since the 

frequencies of lasers used in weapons and for material processing 

have reached picosecond to femtosecond order of magnitudes, the 

Fourier heat conduction law, the core heat transfer law, is no longer 

applicable with ultra-fast heating of various objects. Another 

example is that the Fourier heat conduction law breaks down for heat 

conduction problems in nano-materials and carbon nanotubes 

because the size effect cannot be neglected in the nano-scale. 

In fact, in the early 1950s, the Fourier heat conduction law was 

questioned, because Fourier’s law leads to the nonphysical 

conclusion for transient heat conduction processes that the heat 

propagation speed is infinite since the heat conduction equation 

based on Fourier’s law is parabolic. This physical drawback has 
1attracted many attempts to improve Fourier’s model. Cattaneo,  as a 

2 3pioneer, and subsequently Vernotte  and Morse and Feshbach  

developed a new heat conduction model, often called the CV 

equation, to replace Fourier’s law. The CV equation is hyperbolic 

due to an additional term including the derivative of the heat flux 

with respect to time, which makes the heat propagation speed finite. 
4 5 6Later, Gurtin and Pipkin , Coleman et al. , and Tzou  deduced more 
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general heat conduction equations, which were similar to the CV 

equation. The earlier hyperbolic conduction models were reviewed 
7by Joseph and Preziosi.

 The non-Fourier heat conduction effect, i.e. the finite heat 

propagation speed, should be taken into account for ultrafast heating 
8or ultralow temperatures. For example, Tsai and MacDonald  

simulated heat impulsion propagation in a solid using a molecular 

dynamics analysis to include the finite heat conduction speed. 
6,9,10Tzou  deduced various expressions for the non-Fourier heat 

11conduction equation. Xu and Guo  studied the phenomena of 
12thermal waves in electronic chips. Brorson et al.  measured the time 

for a heat pulse to penetrate a metallic film with a measured heat 
6propagation speed of about 10  m/s.

The non-Fourier phenomena was considered only for transient 

heat conduction conditions in these studies because the non-Fourier 

conduction models degenerate into Fourier’s model for steady state 

cases. However, in recent years, the applicability of Fourier’s heat 

conduction law has been questioned even for steady state conditions. 
13Lepri et al.  numerically studied heat transport in a nonlinear one-

dimensional harmonic-vibrator chain and found that its thermal 

conductivity was approximately proportional to the square root of 

the particle number (chain length), which indicates the breakdown of 
14Fourier’s law. Narayan and Ramaswamy  calculated the thermal 

conductivity of a one-dimensional fluid based on a momentum 

conservation analysis to show that the thermal conductivity is 
15linearly related to the cube root of the system length. Maruyama  

computed the thermal conductivity of single walled carbon 

nanotubes (CNTs) with lengths of 6-404 nm using molecular 

dynamics simulations and found that the thermal conductivity 

increased with increasing CNT length. Such non-Fourier phenomena 

were attributed to the effect of the low dimensionality of the 

REVIEW  PAPER

© Engineered Science Publisher LLC 20184 | ES Energy Environ., 2018, 1, 4–15

http://espub.pc.evyundata.cn/espub/vip_doc/14705727.html
http://espub.pc.evyundata.cn/espub/vip_doc/14705727.html


Review  Paper ES Energy & Environment

16-18materials by several pioneering researchers . In all these 

calculations, however, the obtained thermal conductivity was based 

on Fourier’s law that is the ratio of the heat flux to the temperature 

gradient. Hence, this method to estimate the thermal conductivity is 

inappropriate when Fourier’s law breaks down. 

Unlike the existing solutions for non-Fourier phenomena which 

are basically modifications that add one or more terms, this paper 

shows the energy-mass duality of heat through revisiting the 

macroscopic nature of heat which leads to a new heat conduction 

law which can be applied to nanoscale heat transfer and heat transfer 

optimization .

2. Dual nature of heat

2.1 Thermomass 
thAfter the historic dispute on the nature of heat in the 18  century as 

to whether heat is a Caloric fluid or the kinetic energy of the 

molecules, heat is now known to be a form of energy. However, heat 

is conserved during transport processes (without conversion of heat 

to other form of energy) which differs from mechanical or electrical 

energy which are dissipated, rather than conserved, during mass or 

charge transport processes. This implies that heat acts like a mass in 

mechanics or like a charge in electrical systems during heat transfer 

processes, that is, heat has the nature of mass.
19According to Einstein’s special theory of relativity , the mass 

and energy of an object are related by

2
2 2 20

0 0
2    2

1
=

21

M  c
E Mc M c M u

u /c
= » +
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(1)

in which M is the moving mass or the relativistic mass of the object, 

M is the rest mass, u is the velocity, c is the speed of light in a 0 

vacuum, E is the total energy or the relativistic energy of the object, 
2and M c  is the energy of the rest object. The relativistic energy is 0

equal to the sum of the rest energy and the kinetic energy of the rest 

mass and the relativistic mass is equal to the sum of the rest mass and 

its equivalent mass when the velocity of the object is much less than 

the speed of light. Now consider heat conduction in dielectric solids 

with an object with rest mass, M , and temperature, T. M  is the sum 0 0

of all the atomic rest masses in the object. The thermal vibration 

energy (i.e. phonons, which are energy quanta) is assumed to be E  D0

and the atomic relativistic mass will then be larger than the rest mass. 

Since the velocities of the lattice vibrations are much less than the 

speed of light, the increased mass due to the thermal vibrations is 

approximately

0
2
D

h

E
M

c
= (2)

Thus, M  was called the THERMOMASS, i.e. the thermal vibration h

mass or the equivalent mass of the phonon gas in dielectric solids by 
20-24Guo et al. . This is the common view of the physical science 
25community , as Feynman pointed out in his physics lecture that a 

26hot gas is heavier than a cold gas . Thus, the total mass of the solid 
is equal to the sum of its rest mass and the equivalent mass of the 
phonon gas. Note that the concept of “thermomass” differs from that 
of “caloric” in the 18th century. The thermomass is the equivalent 
mass of thermal energy, whereas the caloric was an imaginary, 
invisible, massless fluid. 

2.2 Thermomass gas
Similar to an ordinary gas consisting of a large number of randomly 
moving atoms or molecules, a thermomass gas consists of a large 

number of randomly moving particles with relativistic masses. The 
thermomass gas in dielectric solids is the phonon gas, because the 
moving particles with relativistic masses are the phonons, while the 
thermomass gas in ordinary gases or metals is the thermon gas, 
because the moving particles with relativistic masses are the 

27thermon . Thus, the heat flux is essentially the directional flow of 
the thermomass gas due to a given temperature gradient. Therefore, 
these phenomena all show that heat has a dual nature, that is, heat 
acts like energy during its conversion with other forms of energy and 
heat acts like a mass during its motion. In other words, the essence 
of heat is its energy-mass duality.

3. Dynamics of a thermomass gas
Since the heat transport in dielectric solids, just like in porous media, 
is actually the motion of the phonon gas with the nature of mass, the 
heat transfer can be described by Newton’s law of motion, so that a 
phonon gas with no net force acting on the gas molecules moves 
with constant mass velocity and accelerates if a net external force 
acts on it. The driving force here has the unit of Newton (dimension 
of force), which is quite different from the generalized force in 

28-30irreversible thermodynamics . 

213.1 State equation of a thermomass gas
The Debye state equation for solids is

0DEE
p

V V

g¶¶
= - +

¶
(3)

in which p is the pressure, V is the volume, and γ is the Grüneisen 

constant. The first term on the right side of Eq. (3), which represents 

the interactions between atoms, is a negative attractive force. The 

second term due to the lattice vibrations is a positive repulsive force. 

Since the second term arises from thermal vibrations, it is the 

phonon gas pressure and can be also called the thermal pressure. The 

phonon gas pressure can be related to the energy by the state 

equation of a phonon gas as

20
2

(      )D
h h

E
p CT CT

V c

g gr
gr

¶
= = = (4)

2in which ρ = CT/c  is the mass density of the phonon gas. The h 

phonon gas pressure is proportional to the square of the temperature 

since the phonon gas mass is proportional to the temperature.

Just as the pressure gradient is the driving force for fluid flow, 

the driving force with the unit of Newton for the phonon gas motion 

in dielectric solids is the pressure gradient in the phonon gas. For a 

one-dimensional case, the pressure gradient on the phonon gas can 

be written as

2 2 2

2 2

(   )hdp C d T C dT
T

dx c dx c dx

gr gr
= =

Therefore, the driving force for the phonon gas motion is 

proportional to the gradient of the square of the temperature.

3.2 Drift velocity of a thermomass gas
When a temperature gradient occurs in a solid, thermal energy flows 

from the hot to the cold regions. The thermal energy motion 

(transport) is usually described by the heat flux q. The heat flux can 

also be described by its velocity defined by an advection transport 

term as

(5)

hq CTur= (6)
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Since the thermal energy in a solid is equal to the energy of the 

phonon gas, CT is actually the energy of the phonon gas per unit 

volume. Thus, u  is the velocity of the thermal energy motion, which h

is equivalent to the mean phonon drift velocity or the macroscopic 

velocity of the phonon gas. Dividing both sides by the square of the 

speed of light yields

2 2h h h h

q CT
m u u

c c

r
r= = =& (7)

in which      is the equivalent mass of the phonon gas flowing across 

a unit area per unit time, which is equal to the product of the mass 

density and the phonon gas velocity. can be referred to as the mass         

velocity of phonon gas, since it is very similar to the fluid mass 

velocity in fluid mechanics.

hm&

hm&

3.3 Governing equations for the motion of a 

thermomass gas
The motion of an object at speeds much lower than the speed of light 

can be characterized by the classical Newton’s laws. This is 
25introduced in detail in textbooks on relativity . Fluid mechanics 

should then be used to investigate the motion of the phonon gas once 

the concept of a relativistic mass is adopted and, since the drift 

velocity of a phonon gas is normally much less than the speed of 

light, Newton’s law can be applied.

3.3.1 Continuity equation
For heat transport in a solid without an internal heat source, the 

equivalent mass of the phonon gas remains constant during the 

motion of the phonon gas. The continuity equation is then

(        )      0h
h    hU

t

r
r

¶
+Ñ × =

¶
(8)

Fig.1  Schematic diagram of the thermal conduction across an 
22infinite plate .

For an infinite plate with different temperatures on its two sides as 

shown in Fig. 1 (T >T ), the continuity equation for one dimensional, 1 2

steady heat conduction can be simplified as                           This . 

means that the phonon gas (thermomass gas) flowing into the plate is 

equal to that flowing out of the plate. However, because the mass 

density of the phonon gas in a solid varies with temperature, the 

phonon gas accelerates along the flow direction such that

consth h hu mr = =&

2 1 1

1 2 2

1h h

h h

u T

u T

r

r
= = > (9)

Thus, the phonon gas has an inertial force even for one dimensional 

steady heat conduction problems.

3.3.2 Momentum equation and general heat 

conduction law
Just as the pressure gradient is the driving force for ordinary gas 

flow, the driving force for phonon gas flow in solids is the pressure 

gradient of the phonon gas or the thermomass gas. The momentum 

variation in the phonon gas results in a change of the inertia. The 

momentum here refers to the macroscopic directional momentum 

carried by the macroscopic motion of the phonon gas, which differs 

from the apparent momentum of a phonon defined in solid physics. 

In addition, a resistance must exist because of the non-linearity of 

the lattice vibrations and defects in the solid. Thus, the equation of 

motion for the phonon gas can be written as in fluid mechanics as:

0h
h h h

dU
P f

dt
r +Ñ + = (10)

Here, the first term represents the inertial force of the phonon gas, 

the second term is the pressure gradient and the third term is the 

resistance. 

For a one dimensional steady case, Eq. (10) can be simplified to

0h h
h h h

du dp
u f

dt dx
r + + = (11)

this equation can be rewritten as a relationship between the 

temperature and the heat flux, which is the same as the general heat 
22conduction equation . The equation for one-dimensional heat 

conduction in dielectrics is then:

TM 0
q T q T T

l C l bk k q
t t x x x

t r
¶ ¶ ¶ ¶ ¶

- + - + + =
¶ ¶ ¶ ¶ ¶

(12)
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(14)

(15)

The quantities τ  and l have dimensions of time and length, TM

respectively, while b is a dimensionless number less than unity, 

which is the ratio of the inertia force to the driving force. The first 

four terms on the left side of Eq. (12) result from the inertial effects, 

the fifth term represents the effect from the pressure gradient 

(driving force), and the sixth term results from the resistance as the 

Simplified conditions Heat condu ction models Expression

All inertia neglected Fourier ’s law q k T=-���Ñ

Spatial inertia neglected Cattaneo-Vernotte model
q

q k T
t

t
¶

+ = - Ñ
¶

Temporal inertia neglected Steady-state non-Fourier model (1     )q b k T= - - Ñ

Table 1. General heat conduction law reducing to other models.
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phonon gas flows through the lattices. Eq. (12), which was 

developed from the concept of the mass nature of heat, describes the 

general relation between the temperature gradient and the heat flux 

vector, and is referred to as the general heat conduction law. The 

general heat conduction law can be simplified to the various heat 

conduction models with appropriate simplifications as listed in Table 1.

Eq. (12) gives a gas dynamics equation for heat conduction in a 

porous medium without any influence from the boundary. However, 

the boundary effects become important in nanosystems and a 

Brinkman term was introduced into the traditional form of Darcy's 

law when transitional flow between boundaries should be taken into 
31account . In analogy with this extension for flows in porous 

hydrodynamics, an additional term should be included in the general 

heat conduction law, Eq. (12) 

2
TM 2 0l b T T

t
t k k m

¶
+ Ñ - Ñ + Ñ + - Ñ =

¶

q
q q q

where μ is the effective viscosity of the thermomass gas. In porous 

media, the Brinkman extension predicts a boundary layer with the 

nonslip or slip boundary condition significantly changing the drift 

velocity. However this boundary layer is usually very thin and can be 

ignored in large systems. Similarly, the Brinkman term in Eq. (16) 

reflects the additional drag due to the walls in the system and should 

be considered in nanoscale systems when the characteristic system 

length is comparable with the friction boundary layer of the 

thermomass gas. In other words, the Brinkman extension is 

necessary only if the system Knudsen number is large. This 
32-34extension has also been suggested by Cimmelli et al.  in an 

interesting example similar to the nonlinear extension of the Guyer-

Krumhansl (GK) equation where the effective viscosity is related to 

the square of the mean free path of the energy carriers.

4. Boltzmann transport equation of a 

thermomass gas
The phonon hydrodynamic equations can be derived from the 

24, 35-39phonon Boltzmann equation . Generally, the objective is to find 

the real phonon distribution function, f, and then the governing 

equations. However, many assumptions are required to solve the 

Boltzmann equation as in fluid mechanics. Different approaches for 

dealing with the Boltzmann equation then lead to different governing 

equations. In the following section, the Boltzmann equation will be 

analyzed with the thermomass concept with the results compared 

with other solutions for phonon hydrodynamics. This will show the 

inherent similarity between the governing equations for heat 

conduction based on thermomass theory and that based on phonon 

hydrodynamics.

The macroscopic variables, such as the internal energy density, 

E, and the heat flux, q, are related to the microscopic distribution 

function as

s   s
s

E fw=åòh
k

s
i s s

s i

q f
k

w
w

¶
=

¶
åò h

k

(17)

(18)

where s is the index of the phonon branches, k is the wave vector, and 

ω  is the frequency. The integral is over the whole k space and then s
39summed over all branches. Sussmann & Thellung  deduced a heat 

conduction equation by neglecting the Umklapp processes in perfect 

2        2( 2 )R T    l
t

t k
¶

+ = - Ñ + Ñ + ÑÑ ×
¶

q
q q q (19)

dielectric crystals using a mean free time approximation on the 
36distribution function. Guyer & Krumhansl  used an eigenvalue 

analysis of the Boltzmann equation to obtain the governing equation 

known as the Guyer-Krumhansl equation

where l is the mean free path of the phonons. The form of Eq. (19) is 
39similar to the results of Sussmann & Thellung  and was further 

37analyzed by Hardy & Albers . The impact on the heat conduction of 

Umklapp scattering and other quasi-momentum non-conserving 

processes in Eq. (19) is described by a relaxation time, τ .R

The distribution function for the equilibrium state follows the 

Planck distribution,

(16)
1

exp(     /      )   1
E

B

f
k Tw

=
-h (20)

The normal process tends to relax the distribution function to the 

displaced Planck distribution

1

exp( / ) 1
D

B

f
k  Tw

=
- × -h hk  u

(21)

where u is the so-called drift velocity of the phonon gas. The 

resistive quasi-momentum non-conserving process tends to relax the 

distribution function to the equilibrium Planck distribution f . Thus, a E
35, 38relaxation type of phonon Boltzmann equation can be written as

( )
s s s s

s s E D

R N

f f f f
f

t t t

- -¶
+ ×Ñ = +

¶
v (22)

swhere v  is the group velocity and τ  is the relaxation time of the N

normal processes.

In low temperature prefect crystals, the normal processes are 

dominant and the Umklapp processes are rare, so τ  << τ . Then, f  is N R D
39a good approximation to the real distribution . This is the simplest 

assumption to demonstrate the structure of the solution of the 

Boltzmann equation. The deviation from f  can be taken into account D

by a Chapman-Enskog expansion.

Substituting f  into Eq. (22) givesD

( )
s s

s s E D
D

R

f f
f

t t

-¶
+ ×Ñ =

¶
v (23)

40In the transport theory for gases , multiplying the Boltzmann 

equation by the momentum of the molecules, mv, gives the 

momentum conservation equation. In phonon gases, ħω is the 
2energy of a phonon and ħω/c  is the equivalent mass according to 

2thermomass theory. In this way, ħωv /c  represents the momentum i

of a phonon. This is the real momentum and differs from the quasi-
2momentum of phonons, i.e. ħk. Multiplying Eq. (23) by ħω/c  and 

2ħωv /c  leads to the mass and momentum conservation equation for i

phonon gases as in hydrodynamics. However, unlike ideal gases in 

channels, the phonon gases experience a resistance from the 

Umklapp processes or crystal defects. This difference is reflected 

by a momentum sink term with the collision term in Eq. (23) 
2 2multiplied by ħωv /c . In practice, the parameter c  can be cancelled i

out from the equations since it is a constant.
2 2Multiplying Eq. (23) by ħω/c  and ħωv /c  and integrating in k i

space yields
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The third term on the left side of Eq. (28) assumes a cubic symmetry 

condition.

The momentum transport equation, Eq. (28), can be compared 

with that in thermomass theory (Eq. 12):

R
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D E Ds s

D

f f f
f

t

w w
w

t

¶ -
+ ×Ñ =

¶
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R

( )s s s
D i E D is s

D i

f v f f v
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t

w w
w

t

¶ -
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¶
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ò

h h
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(24)

(25)

When the drift velocity, u, is small, a Taylor expansion of f  around D

equilibrium up to the second order gives

2
2 2
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where f  and f  are even functions in k space and f  is odd. E ++ +

Substituting the second order expansion of f  into Eq. (24) gives the D

energy balance relation 

0j     j

E
q

t

¶
+Ñ =

¶
(27)

Substituting the second order expansion of f  into Eq. (25) gives the D

governing equation 
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Eq. (29) has been modified by adding the thermomass conservation 

relation, Eq. (8), to create a form that is a parallel with Eq. (28). 

The isotropic thermomass pressure is represented in the phonon 

Boltzmann method as

2 2
h 2 2

/

1
( ) ( , , )

3
s s s

E E x x y z

a

p f v f t v dk dk dk
c cp

w w

±

= =ò òòò
h h

k
x    k (30)

The temperature gradient driving the heat flux corresponds to the 

pressure difference of the heat carriers as in hydrodynamics. The 

phonon gas pressure can be obtained either macroscopically by Eq. 

(4) or microscopically by Eq. (30). The predicted relaxation time for 
-10Si at 300 K based on the first method is 1.4×10  s for k  =149 W bulk

-1 -1 -1 -1 -3 41m  K , C  = 704.6 J kg  K , ρ = 2330 kg m , and γ = 1.5 . The v
-10second method predicts the thermal relaxation time to be 0.5×10  s 

42 42 -10 . The experimental value  is about 1.5×10 s. Thus, both methods 

give the same order-of-magnitude as the measured value.

The three terms on the left side of Eq. (28) come from f , f  and + ++

f . If only the third term is retained, Eq. (30) reduces to the E

traditional Fourier’s law of heat conduction. If the terms from f  andE  

f  are retained, Eq. (30) reduces to the telegraphic Cattaneo-Vernotte +

thermal wave equation. The displaced Planck distribution, when 

expanded to the second order, gives a governing equation derived 

from the Boltzmann equation that is similar to thermomass theory. 

However, the coefficient of the convective term is 15/16 in Eq. (28) 

but unity in Eq. (29). This is related to the change in the phonon 

energy caused by the Doppler effect. The phonon gas differs from a 

gas consisting of real particles since the phonon energy varies with 

the drift motion, so the convective term is “gibbous”.

5. Essence of Fourier’s heat conduction law

5.1 Fluid flow in porous media: Darcy’s law
The fundamental equation characterizing fluid flow in porous media 

31is Darcy’s law

in which       is the mass flux and K  is the permeability of the porous m

media. Therefore, the macroscopic fluid velocity in a porous media is 

proportional to the driving force acting on the fluid (the pressure 

gradient).

Eq. (31) can be rewritten as

m&

in which  f  is the viscosity-induced resistant force per unit volume, mo

β = ρ/K . Eq. (32) represents the balance between the driving force mo m

and the resistant force with the inertial force acting on the fluid being 

ignored. Since the resistance force is linearly related to the velocity, 

the velocity in a porous media is also proportional to the driving 

force. However, when the fluid velocity or the Reynolds number 

(Re) exceeds a critical value (Re>10), Darcy’s law breaks down 

because the inertial force in the fluid cannot be neglected relative to 

the other terms.

5.2 Heat flow in porous media: Fourier’s law
The heat flux can be related to the mass flow rate of the thermomass 

by introducing the concept of a thermomass fluid. Putting the 

relationship between the heat flow and the velocity of the phonon 

gas into Fourier’s model gives

Writing this in terms of the pressure gradient in the phonon gas 
gives: 

2h   h

KdT
u

cdx
r =- (34)

22
( )h h

h h

dp C
u f

dx K

g r
- = =

h h hf ub=

(35)

(36)

Eq. (35) is the same as Eq. (32). As Eq. (32) is for flow in porous 

media, Eq. (35) is the balance equation between the driving force per 

unit volume, dp /dx, and the resistance force per unit volume, f , h h

induced by the phonon scattering. Eq. (36) indicates that the 

resistance force is proportional to the phonon gas velocity with a 

proportionality constant.

Therefore, the physical essence of Fourier’s law of heat 

conduction is that the driving force (or the pressure gradient) of the 

phonon gas flow is in equilibrium with its resistance force. In other 

words, Fourier’s law characterizes the heat motion as the pressure 

gradient balanced by the resistance.
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ρ



6. Applications of the general heat conduction law

6.1 Steady non-Fourier heat conduction in carbon 

nanotubes
Thermal conduction processes that are not described by Fourier’s 

model are referred to as non-Fourier phenomena. When the inertial 

force can be ignored and the resistance is linearly related to the 

velocity, Fourier’s conduction law may then be used to calculate the 

resistance in the equation of motion, Eq. (12). For one-dimensional, 

steady state heat conduction, the equation of motion, Eq. (12), can be 

written as:

2       22
2 0h h

h h h h

du c CdT
u C u

dx dx k

gr
r gr+ + = (37)

22Using the continuity equation, Eq. (37) can be rewritten as

2

2     3     3
(1 ) 0

q dT
K q

C T dxr
- + = (38)

This can be regarded as a generalized form of Fourier’s law for 

steady heat conduction, but is actually a first order approximation of 

Eq. (12). Eq. (38) shows that the heat flux is not just proportional to 

the temperature gradient with higher heat fluxes resulting in 

deviations from Fourier’s law.

In these cases, the thermal conductivity in nanomaterials 

calculated based on experimental data for the heat flux and the 

temperature gradient is not the intrinsic thermal conductivity of the 

material but a quantity related to the intrinsic thermal conductivity, 

which will be referred to as the apparent thermal conductivity

2

2     3     3
(1 )

(     /     )
D

q q
K K

dT dx C Tr
- = = -

DK K>, (39)

where K is the intrinsic thermal conductivity and K  is the apparent D

thermal conductivity. Therefore, the apparent thermal conductivity 

extracted from the experimental data based on Fourier’s law of heat 

conduction is actually a function of the heat flux, which is always 

less than the intrinsic thermal conductivity.

Now consider one dimensional, steady heat conduction in 

carbon nanotubes with lengths of 40 μm, 80 μm and 120 μm. The 

boundary conditions on both ends are constant temperatures with a 

temperature difference ΔT = T -T = 20 K. The temperature 1 2 

independent thermal conductivity of the carbon nanotube, K, is K = 

5000 W/m K. If the temperature difference remains constant, varying 

the carbon nanotube length is equivalent to changing the heat flux. 

When the heat flux is very large, the inertial force of the phonon gas 

cannot be neglected, which leads to nonlinear temperature profiles 

along the nanotube as shown in Fig. 2. When the nanotube is longer, 

the heat flux is less, and the temperature profiles are closer to linear. 

Fig. 3 shows the apparent thermal conductivities of carbon nanotubes 

with various lengths (heat fluxes), where the apparent thermal 

conductivities, K , are always less than the intrinsic thermal D

conductivity, K. As the nanotube length increases, the heat flux 
2 2 3 3decreases and K approaches K. For q /ρ C T <<1 in Eq. (38), D 

Fourier’s law is then applicable and the temperature profiles are 

linear. If the experimentally measured thermal conductivity is 

assumed to be the intrinsic thermal conductivity rather than the 

apparent thermal conductivity, the thermal conductivity would be 

mistakenly found to vary with the nanotube length (see Fig. 3). The 
12 2 15heat fluxes through carbon nanotubes can reach 10  W/m  . The 

2 2 3 3term q /ρ C T  is then not much less than unity, which may be one of 

the factors for the variation of the thermal conductivity with the 

carbon nanotube length in addition to the ballistic transport of 
15phonons in Maruyama’s  calculated results.

22Fig.2  Temperature profiles along a carbon nanotube .

Fig. 3  Dependence of the apparent thermal conductivity on carbon 
22nanotube length .

6.2 Effective Thermal Conductivity of 

Nanostructures
The idea that phonons act like gases can be traced back to the 1920s 

43in a theory proposed by Debye et al.  They predicted the thermal 

conductivity in terms of MFP as in the kinetic theory of gases. Guyer 

and Krumhansl solved the phonon Boltzmann equation using a linear 

assumption and obtained a transport model (GK model) containing 

transient and nonlocal terms. For steady heat conduction in straight 
36wires or films, the GK model can be simplified as 

2

5
R  Nl  l

TkÑ = - + Ñq q (40)
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where l  = v τ  and l  = v τ  are the MFPs of the resistive scattering R s R N s N

and normal scattering, respectively. The nonlocal term suggests that 
  the heat flux in a wire or film is non-uniform in each cross section. If   

     2      2q is negligible, Eq. (40) reduces to Fourier’s law. If q dominates, 

Eq. (40) has a form like the Navier-Stokes equations and predicts a 

parabolic heat flux profile like the velocity profile in Poiseuille flow. 

A characteristic length can be defined as,                        with its ratio  

relative to the characteristic size of the nanosystem measured by a 

Knudsen number, Kn  = l /L, where L is the film thickness or the G G

wire diameter. Note that the characteristic length, l , is differs from G

2 2/Gl Tk= Ñ Ñ q

ÑÑ



2
m m

K

m
m= - + Ñf u u (41)

where f is the total resistance, u  is the fluid velocity, μ is the fluid m

viscosity, and K is the permeability. The first term in Eq. (41) leads 

to Darcy flow, so this is called the Darcy friction term. The second 

term in Eq. (41) is from normal fluid flow and is called the Brinkman 

term. The Brinkman term describes the advection effect. The 
1/2characteristic length, l  = K , reflects the attenuation length of the B

boundary effect. Therefore, the dimensionless Brinkman number, Br 

= l /L, reflects the importance of  the boundary viscous friction B

compared to the Darcy friction. If Br<<1, the boundary effect region 

is much smaller that the channel width and the velocity profile is 

nearly uniform across the cross section, which agrees with the 

prediction of Darcy’s law. Conversely, if Br>>1, the flow is mainly 

impeded by the boundary drag; thus, the velocity profile approaches 

that for Poiseuille flow. Since thermomass theory treats the phonon 

gas as a fluid with mass in the porous medium, the constitutive 
44equation for steady heat conduction in nanosystems systems is ,

2 2 2h  R

h

BT l
m�t

k
r

- Ñ = - Ñ = - Ñq q q q (42)

An analysis of the phonon Boltzmann derivation also shows that the 

Brinkman term arises microscopically from the Chapman-Enskog 

expansion of the distribution function, which is exactly the same as 

the microscopic foundation of the viscous stress term in the Navier-

Stokes (NS) equations. In this case, the heat transport is in the 
45,46ballistic-diffusive regime . Similarly, recent work has also 

indicated that a hydrodynamic description of localized 

electromagnetic waves is possible in complex open systems. The 

analytical solution to Eq. (42) was then obtained for the Darcy-
44

Brinkman flow of a phonon gas . Solutoins can also be obtained for 

other geometries like nanofilms and nanowires. If l  is constant and B

the heat flux vanishes at the boundaries, the heat flux profile for fully 

developed flow in a nanofilm is

cosh( /  ) 
( ) 1

cosh(   2  )
B

B

r l
q r T

L   l 
k

é ù
= - Ñ -ê ú

ë û/
(43)

where r[0, L/2] is the distance from the center line. Then, the 

effective thermal conductivity is defined by the integral

nf
eff 0[1  2Brtanh(1/2Br)]L

qdy

TL
k k= - = - ×

Ñ

ò
(44)

For a nanowire, the effective thermal conductivity is

2

nw 01
eff 2

0

0

(4Br)

(/2Br) !(    1)!
1 4Br 1

(4Br)(/2Br)

!  !

t

t

t

t

J  i t   t 

iJ  i

t  t 

k k k

-¥

=

-¥

=

é ù
ê úé ù +
ê ú= - × = -ê ú
ê úë û
ê ú
ë û

å

å
(45)

Illustrative solutions of the Navier-Stokes model and the Darcy-

Brinkman model are presented for nanofilms in Fig. 4. For 

comparison, we assumed l  = l ; thus, Kn  = Br. At small Br, the G B G

Navier-Stokes model predicts a large flow rate with the maximum q 

much larger than q . For the Darcy-Brinkman model, the viscous 0

layer is constrained in the near wall region with the central flow 

region having a uniform heat flux, q . As Br increases, the profile of 0

the Navier-Stokes model is asymptotic to the Darcy-Brinkman 

model. The difference between the predicted for the Navier-           

Stokes model and Darcy-Brinkman model is 9.1% at Br = 1 and 

0.6% at Br = 4. Thus, neglecting the Darcy friction term could cause 

considerable error at moderate sizes. The predicted results for silicon 

nanofilms and nanowires are compared with experiment data in Fig. 5 

which shows that the present model can well predict the effective 

thermal conductivity of both nanofilms and nanowires.

effk

Fig. 4  Velocity profiles based on the Navier-Stokes model (circles) 

and the Darcy-Brinkman model (lines) for different Brinkman 
47numbers (Br) .

Fig. 5 The effective thermal conductivity of Si nanosystems 

predicted by the phonon gas model compared with the experimental 

data. Circles: experimental data for nanofilms; Triangles: 
48experimental data for nanowires .
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the ordinary MFP. The latter is l  in general. The Poiseuille flow of a R
2  2phonon gas occurs when Kn >>1, i.e. the term, l q, is much G G

greater than q in Eq. (40). 
Darcy’s law is only a simplified description of porous flow in 

general materials. A general constitutive equation for porous flow 

must include the effects of acceleration, nonlinear drag and 

advection. Brinkman’s equation is a well-known generalization to 

Darcy’s law,

Ñ



7. Applications of thermomass energy for heat 

transfer optimization 
The minimum entropy generation principle has been applied to 

49,50optimize the heat transfer by minimizing the entropy generation . 

However, for a counter-flow heat exchanger, the effectiveness 

increases rather than decreases with increasing entropy generation 
51when the effectiveness is less than 0.5. In addition, Shah et al.  

analyzed the irreversibility of 18 different types of heat exchanger 

flow arrangements and concluded that the minimum entropy 

generation associated with the maximum efficiency was not always 

applicable to heat exchanger analyses. That is, minimizing the 

entropy generation of a heat transfer system does not always give the 

best heat transfer performance, which really needs an alternative 

physical quantity.

7.1 Thermomass energy and entransy
The analogies of the transport processes for electricity, fluid 

mechanics and thermal science listed in Table 2 show that 

thermomass corresponds to the electric charge and the fluid mass, 

while the thermal potential corresponds to the electrical and 

gravitational potentials, the thermomass potential energy 

corresponds to the electrical and mechanic potential energies and 

Fourier’s law corresponds to Ohm’s law and Darcy’s law. 
52Guo et al.  defined the quantity entransy as a simplified 

expression for the thermomass potential energy with the following 
53integral form ,

Table 2. Analogies among electricity, fluid mechanics and heat transfer.

21

2       2
v

UT
G Mc T= = (46)

where M is the solid object mass, T is the temperature, c  is the v

constant volume specific heat, U is the internal energy of the solid 

object, and G is termed the entransy, which is a state quantity.

7.2 Entransy dissipation and entransy dissipation-

based thermal resistance
For a heat conduction process without internal heat sources, 

multiplying both sides of energy conservation equation by the 

temperature, T, yields the entransy balance equation

2( / 2)
(     )

cT
qT q T

t

r¶
= -Ñ × + ×Ñ

¶
(47)

2/d dR G Q= (48)
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where the left side is the time variation of the entransy and the first 

and second terms on the right side are the entransy flux and the local 

entransy dissipation rate,            . The entransy balance equation 

shows that the entransy is not conserved due to the heat transfer 

irreversibility induced entransy dissipation even though the heat is 

conserved during a heat conduction process. For a given heat flux, 

minimization of the entransy dissipation leads to the minimum 

temperature difference. Conversely, for a given temperature 

difference, maximization of the entransy dissipation results in the 

maximum heat flux. That is, the entransy dissipation extremum 

corresponds to the optimal heat conduction performance. 

Similarly, for steady-state convective heat transfer processes, 

the entransy dissipation extremum results in the best heat transfer 

performance with the maximum convective heat transfer coefficient 

for the given conditions. In addition, as with electrical conduction 

where the electric resistance can be expressed as the electrical 

energy dissipation divided by the square of the current for the whole 

system, the thermal resistance of a thermal system is the ratio of the 

entransy dissipation rate divided by the square of the heat transfer 

rate

 

g  = qg T×Ñ
×



where G  is the entransy dissipation rate over the whole heat transfer d

domain and Q is the total heat transfer. Thus, the entransy dissipation 

extremum principle can be described as the principle of the 

minimum entransy dissipation-based thermal resistance. 

7.3 Heat conduction and convection optimization
The minimum entransy dissipation-based thermal resistance 

principle has been used to optimize heat conduction, heat convection 
53and thermal radiation processes . For instance, the volume-point 

heat conduction problem shown in Fig. 6 has a uniform internal heat 

source in a two-dimensional region with length L and width H. The 

heat is only released to the ambient from a point boundary such as 

the cooling surface with opening W and temperature T  on one side. 0

Some high thermal conductivity material (HTCM) is to be added in 

this region to reduce the device temperature. The HTCM distribution 

is to be optimized to minimize the average device temperature for a 

given amount of HTCM.
2For example, consider an internal heat source of 100 W/cm , 

L=H=5 cm, W=0.5 cm, and a cold temperature of 10 K. The thermal 

conductivity of the base material is 3 W/m K, while that of the 

HTCM is 300 W/m K. The result with a uniformly distributed 

HTCM is shown in Fig. 7a  with an average temperature of 544.7 K. 

The optimal HTCM arrangement based on the minimum entransy 

dissipation-based thermal resistance principle is shown in Fig. 7b. 

The average temperature is 51.6 K, a 90.5% reduction compared 

with the result for the uniformly distributed HTCM. 

Fig. 6. Two-dimensional heat conduction with a uniformly internal 
54heat source .

54Fig. 7 Different HTCM arrangements : a) uniform HTCM 
distribution. b) HTCM distribution optimized by entransy theory.

Optimization of convective heat transfer processes using the 

minimum entransy dissipation-based thermal resistance principle 

indicates that the optimal flow pattern for laminar heat transfer in a 
55circular tube has multiple longitudinal vortices , while that for 

turbulent heat transfer between two parallel plates has several small 
56counter-clockwise eddies near the plate , as shown in Figs. 8 and 9. 

Thus, these optimization examples indicate that the minimum 

entransy dissipation-based thermal resistance principle can be used 

to optimize convective heat transfer processes to reduce the pumping 

power for the given heat flux.

55Fig. 8  Optimal flow field for laminar heat transfer in a circular tube .

Fig. 9  Optimal velocity field for turbulent heat transfer between 
56parallel plates .

7.4 Optimization of heat exchangers and heat 

exchanger networks
According to the definition, the entransy dissipation-based thermal 
resistance of a heat exchanger is the ratio of the arithmetic 

57temperature difference to the total heat transfer rate , which has the 
following relation to the heat exchanger effectiveness. 

* *

2

2      (1         )
P

R C
=

+ +
(49)

*where P is the heat exchanger effectiveness, R  is the dimensionless 

entransy dissipation-based thermal resistance, which is the ratio of 

the entransy dissipation-based thermal resistance to the reciprocal of 
*the lower heat capacity rate, and C  is heat capacity rate ratio. As 

shown in Eq. (49), the effectiveness decreases with increasing 

dimensionless thermal resistance. This is unlike for an entropy 

analysis of a cross-flow heat exchanger, where the variation of the 

entropy generation with the effectiveness increase is not 
57monotonic . That is, the entransy approach is a more effective 

method for optimizing cross-flow heat exchanger designs than the 

entropy approach.

 The entransy dissipation-based thermal resistance has also been 

used to construct holistic constraints between the design parameters 
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and system requirements for various heat transfer designs without 
58introducing intermediate variables . These are convenient for 

analyzing the heat transfer processes in complex heat transfer 

systems as a whole and, therefore, for optimizing the global system 

performance.

Fig. 10 shows a heat exchanger network with two loops 

connecting three heat exchangers, HX , HX  and HX . The hot fluid 1 2 3

flows into HX  with inlet temperature T , heat capacity m c  and 1 h,i h p,h

outlet temperature T . The cold fluid flows into HX  with inlet h,o 3

temperature T , heat capacity m c , and outlet temperature T . The c,i c p,c c,o

heat flow, Q, is transferred from the hot fluid to the cold fluid 

through three heat exchangers. The total heat capacity of both fluids 

in the internal loops is given and the optimization objective to 

minimize the total thermal conductance of all three heat exchangers.

[ ]1 2 3min  (    )     (     )     (    )kA kA kA+ + (50)

58Fig.10  Multi-loop heat exchanger network .

The conventional log-mean temperature difference method gives 

three heat transfer equations for the three heat exchangers and two 

energy conversion equations for the two internal loops for the overall 

constraints using the intermediate temperatures, T , T , T  and T . 1 2 3 4
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(52)

(53)
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(55)

In addition, the total heat capacity of the two loops fluids is

1 ,1 2 ,2p pm c m c g+ = (56)

This optimization problem is a typical conditional extremum 
problem with the constraints in Eqs. (52) ~ (56). A Lagrange 
function, J, is then constructed as
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(57)

Making the derivative of J with respect to X  (X ϵ{(kA) , (mc ) ,T , l l m p i j

λ }) equal to zero yields 9 equations. Combining these with the 6 k

constraints gives 15 equations to be solved to obtain the 15 unknown 

quantities.

The log-mean temperature difference method introduces 4 

intermediate variables which increase the complexity of the system 

optimization analysis. The entransy-dissipation-based thermal 

resistance method does not need to introduce the intermediate 

variables which reduces the number of constraint equations. In this 

multi-loop heat exchanger network, the net entransy flowing into the 

heat exchanger network is equal to the sum of the entransy 

dissipation rate of each heat transfer process in the entransy balance 

equation which acts as the system constraint, 

3
, , , , 2

1

( )
2 2

h i h o c i c o
i

i

T T T T
Q Q R

=

+ +
- =å (58)

where R  is the entransy-dissipation-based thermal resistance of i

component i 
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(61)

A Lagrange function, J , is constructed using Eqs. (59) – (61) ase
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(62)

Setting the derivative of J  with respect to Y  (Y ϵ{(kA) , (mc ) , e l l m p i

λ }) equal to zero yields 5 equations. Combining these with the 2 k

constraints gives 7 equations that are solved for the 7 unknown 
quantities. Thus, the entransy method significantly reduces the 
number of unknown variables and constraints that simplifies the 
solution since the entransy dissipation based system constraint 
eliminates the unknown intermediate fluid temperatures and reduces 
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the number of constraints for multi-component thermal systems.

7.5 Difference between Entransy and Entropy
Table 3 shows the differences between entransy and entropy. 
Entropy is a function of temperature and pressure which is a 
thermodynamic quantity that reflects the ability to do heat-work 
conversion. Entropy generation then represents the loss of ability for 
heat to work conversion. Entransy is a function of temperature only 
which is a heat transfer quantity and represents the ability of heat 
transfer not related to heat-work conversion. Entransy dissipation 
then measures the loss of ability for heat transfer.

Entropy Entransy

State quantity
S=S(T, V)

dS=MCvdT/T+RdV/V

G=G (T )

dG=MCvTdT

G= MCv T2/2(for Cv=const)

Physical meaning Heat to work conversionability Heat transfer rate ability

Process quantity Entropy flow, Q/T Entransy flow, QT

Process irreversibility

and optimization

criterion

Entropy generation rate for

thermodynamics processes

Entransy dissipation rate

for heat transferprocesses

Table 3 Comparison between entransy and entropy.

8. Conclusions
(1) The concept of thermomass defined by the mass-energy 

relation in Einstein’s special relativity was used to define a phonon 

gas in dielectrics as a weighty, compressible fluid. Newton 

mechanics is then used to describe the motion of the phonon gas in a 

porous medium because the drift velocity of a phonon gas is 

normally much less than the speed of light. This means that heat has 

an energy-mass duality, that is, heat acts as energy during its 

conversion with other forms of energy but acts as a mass during its 

motion. In addition, unlike other forms of energy, heat is conserved 

during irreversible transport processes, which further demonstrates 

the mass nature of heat.

(2) The momentum conservation equation of a weighty phonon 

gas was developed as in fluid mechanics, which is the general heat 

conduction law degenerating into the three non-Fourier’s models for 

various simplified conditions. The general relation between the heat 

flux and the temperature gradient can also be deduced from the 

phonon Boltzmann equation using the concept of thermomass, which 

is very similar to the general heat conduction law. 

(3) When the heat flux in a nano-scale device is so large that the 

inertial force of the phonon gas cannot be neglected, Fourier’s law 

then breaks down even for steady state conditions. In these cases, the 

calculated ratio of the heat flux to the temperature gradient from 

experimental data is the apparent thermal conductivity, which is 

always less than the intrinsic thermal conductivity of the material.

(4) A more general macroscopic heat conduction law for nano-

systems is presented based on the phonon gas dynamics in a porous 

medium, where the Darcy’s term represents the volume resistance 

and the Brinkman term represents the surface resistance respectively. 

As the systems get smaller, the Brinkman term becomes more 

important and the thermal conductivity becomes less in 

nanomaterials. An explicit expression is then given for the size 

dependent thermal conductivity of silicon nanosystems, which 

agrees well with experimental data for both nano-wires and films.

(5) Analogies among heat conduction, electrical conduction and 

fluid flow in porous medium were used to define a new quantity, the 

thermomass potential energy. Its simplified expression is the 

entransy, which is not conserved but is dissipated during the 

processes. The entransy dissipation is a measure of the irreversibility 

of heat transfer processes not related to the heat and work 

conversions.

(6) For heat transfer processes and simple devices, the entransy 

dissipation-based thermal resistance can be used as an optimization 

criterion to increase the energy efficiency. For complex heat transfer 

systems, the entransy balance equation is used as the overall system 

constraints to analyse or optimize the thermal performance of 

systems as a whole. 
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