
A Review of Simulation Methods in Micro/Nanoscale Heat Conduction

Significant progress has been made in the past two decades about the micro/nanoscale heat conduction. Many computational methods have 

been developed to accommodate the needs to investigate new physical phenomena at micro/nanoscale and support the applications like 

microelectronics and thermoelectric materials. In this review, we first provide an introduction of state-of-the-art computational methods for 

micro/nanoscale conduction research. Then the physical origin of size effects in thermal transport is presented. The relationship between 

the different methods and their classification are discussed. In the subsequent sections, four commonly used simulation methods, including 

first-principles Boltzmann transport equation, molecular dynamics, non-equilibrium Green’s function, and numerical solution of phonon 

Boltzmann transport equation will be reviewed in details. The hybrid method and coupling scheme for multiscale heat transfer simulation 

are also briefly discussed. 
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1. Introduction
The miniaturization of devices and structures, higher power density 

of the novel electronic and optic cells and more severe thermal 

conditions pose huge challenges to the thermal management and 

energy conversion issues. Specifically, heat conduction in micro-

nanoscale requires sophisticated understandings and interpretations 

due to its distinct physical pictures from macroscopic thermal 

transport, and it is of great difficulty to handle multi-scale heat 
1,2transfer problems using a uniform law or theory.  Hence, new 

theories, computational methods and experimental techniques have 

emerged to investigate the thermal transport from nanoscale (1-100 
3nm) to microscale (0.1-100 m) in the past two decades.  Advanced μ

experimental methods, such as optothermal Raman, electrical self-

heating, T-type sensor and 3  technique, have been developed to ω
4-6measure the thermal conductivity of nanowires and thin films.  The 

measured ultrahigh thermal conductivities of graphene and carbon 

nanotubes (CNTs) have intrigued enormous interest in low-

7,8dimensional materials,  and considerable work is devoted into 

laboratory studies on superlattices, nanofluids, as well as special 
9,10 nanostructures and interfaces at micro/nanoscale.

Despite the rapid progress of experimental measurements, it is 

still very challenging to conduct nanoscale heat conduction 

experiments, and the measured values may be lack of accuracy due 
11to many unforeseen factors.  Therefore, computational methods are 

highly demanded to assist the experiment studies to explain 

underlying mechanisms or predict new physical phenomena that the 

current measurement techniques are not mature enough to observe. 

For instance, the thermal rectification in asymmetric graphene, 

which was predicted by many molecular dynamics simulations, has 
12,13been realized in the experiment recently.  First-principles 

calculations predicted the important role of low-frequency phonons 

in Si, which was later confirmed by transient thermal grating 
14,15measurements over micron distances.  Owing to the newly 

developed computational methods in the last twenty years, the 

temperature and heat flow can be resolved into phonon 
16-19contributions,  and the spatial and time information of phonons is 

more accessible to give a comprehensive understanding of ballistic, 

hydrodynamic, coherent, localized and other unique transport 
20-25regimes.  Moreover, a better knowledge of micro-nanoscale heat 

conduction has shed light on the promising engineering applications 

such as thermal diode, thermal cloak, high performance 
26-29thermoelectric materials and nanocomposites.     

This review is focused on widely used computational methods 

in heat conduction at micro/nanoscale. As seen in Fig. 1, the 

numerical models are approximately classified into several 

categories based on the length and time scales of the thermal 

transport phenomena. Different methods are used to handle specific 

heat conduction problems of different range of scales, and the 

overlap areas of two techniques indicate that it is feasible to map 
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from one scale to the next scale. However, a universal equation is 

still lacking to deal with thermal transport issues at any scale. The 

methods in this review mainly involve first-principles Boltzmann 

transport equations (BTE), molecular dynamics (MD) simulations, 

non-equilibrium Green’s function (NEGF), numerical solution of 

phonon BTE, and hybrid methods. The classification of these 

methods will be discussed later and we will give a brief introduction 

of each approach here. The first-principles BTE methods are 

available for parameter-free predictions by solving the BTE with the 

interatomic force constants (IFCs) from density functional theory 

(DFT). The computational cost of the first-principles BTE is so 

expensive that the system size is limited to hundreds of atoms, but 

the advances in high performance computing have greatly 

accelerated the application of first-principles BTE nowadays. The 

predicted results from first-principles BTE are quite accurate 

compared to experimental data, providing guidelines for the 

discoveries of novel materials. MD simulations are based on the 

integration of the Newton’s equations for an ensemble of atoms, 

usually employing an empirical potential to describe atomic 

interactions. Despite the classical nature of MD simulations, it is 

effective to deal with nanostructures, interfaces and other heat 

transfer topics. The NEGF method is powerful to investigate heat 

conduction at the interfaces and nanostructures, which is inspired by 
30the implementation of Green’s function in electron transport.  The 

numerical solution of BTE is adopted to study mesoscopic thermal 

transport, and fundamental information of phonon scattering is 

required to incorporate into the calculations in an explicit pattern. 

The hybrid methods, which are not fully developed so far, aim to 

increase the computational efficiency of multi-scale heat transfer. 

Fig. 1 Approximate length and time scales for the commonly used 

computational methods.

In this review, we will first discuss the physical origin of size 

effects in micro-nanoscale heat conduction, followed by a short 

description of the relationship between different methods in Sec 2. In 

Sec. 3, we explore the utilization of first-principles BTE for non-

metallic crystals, followed by a description of electron-phonon 

coupling in metallic crystals. In Sec. 4, we focus on the widely used 

analysis methods within the framework of MD simulations. We 

discuss about the NEGF method in Sec. 5. The direct numerical 

solution of BTE is described in Sec. 6, including Monte Carlo (MC) 

method and deterministic methods based on discrete ordinate method 

(DOM). The hybrid methods are addressed in Sec. 7. In the last 

section, we give a summary of the discussed methods, and point out 

the limitations and outlook.  

2. The origin of size effect and related simulation methods

2.1 The physical origin of size effects
At micro and nanoscale, the non-Fourier heat conduction is 

originated from the different physics of energy carrier transport. In 

most of the solid materials where micro-nanoscale conduction 

research is carried out, thermal energy is carried by lattice vibrations 
31and electrons.  Electrons are the dominating energy carriers in 

metallic solids while lattice vibration is the heat carrier in 

semiconductors and insulators. In particular, the lattice vibration in 

crystalline solids can be decomposed into lattice waves (normal 

modes) and the quantized lattice waves are treated as a quasi-
31 particles, known as phonons. As shown in Fig. 2, the heat 

conduction in solid crystals can be understood from the transport of 

energy carriers (phonon and electrons). The thermal transport in 

solids can be understood from the simple kinetic theory for gases, 

from which it has been shown that the thermal conductivity can be 
31 given by the expression,

1
=

3
Cvlk ,                                                (1)

where C is the specific heat of particles per unit volume, v is the 

average particle velocity, and l is the mean free path (MFP), which is 

defined as the average travelling distance between two scattering 

events. The particle here can be phonons, electrons or other heat 

carriers. 

Fig. 2 The phonon and electron gas models of non-metals and metals. 

In nonmetallic crystals, heat is carried by phonon gases (gray 

spheres) and only phonon transport needs to be considered. In metals, 

both phonon and electron (brown spheres) contribute to thermal 

transport, and they are coupled through electron-phonon scattering.

The size effect discussed below will be focusing on non-

metallic crystalline solid where phonon is the major heat carrier, 

since it is more prominent in these solids than in metals and non-

crystalline solids. Two lengths scales are very important to the 

micro-nanoscale size effect of heat conduction. One is the phonon 
3wavelength and the other is the phonon MFP.  Fig. 3 shows the 

accumulated thermal conductivity of silicon at three different 

temperatures, calculated by first-principles simulation. The 

horizontal axis is wavelength or MFP, and the vertical axis denotes 

the fraction of thermal conductivity contributed by the phonons with 

wavelength or MFP below this value. This figures can quantify the 

contribution of phonons with different wavelength or MFP to the 

overall thermal conductivity. It can be seen that at 300 K most of the 

heat is carried by phonons in the wavelength range of 0.5-10 nm, 

with MFP in the range of 1 nm to 10 μm. These values depend on the 

material type and temperature. In general, the dominating phonon 
3wavelength and MFP are larger at lower temperatures . If the feature 

size of the system is much larger than the phonon MFP, then it falls 

into the macroscopic diffusive energy transport regime, where the 

heat diffusion equation works well. If the feature size is comparable 
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to phonon MFP, the classical size effect (phonon ballistic transport 

phenomenon) should be considered and the BTE can be used to 

describe the energy transport. If the feature size is further 

comparable to the wavelength, then the wave nature of phonons 

should be considered. 

Another reason for the size effect is the interfacial thermal 

resistance (also known as the thermal boundary resistance or Kapitza 
32resistance).  This resistance is originated from different electronic 

33and vibrational properties of different materials.  When an energy 

carrier attempts to travel across the interface, it scatters at the 

interface. The scattering results in a temperature drop at the interface 

and thus gives an interfacial thermal resistance. Note that the 

interfacial thermal resistance occurs at atomically perfect contact and 

should be distinguished from the contact thermal resistance. The 
-9 -6 2 34 interfacial thermal resistance is on the order of 10  to 10  m K/W.

This resistance is very small from the macroscopic point of view. 

However, if the interfaces are very dense, for example, when the 

distance between the interfaces are roughly in the range of 
35nanometer to micron,  it becomes important and even dominant. 

Therefore, these new transport phenomena at small scale 

generally fall into the scale of nanometer to micron. This is also the 

length scale where we need new simulation methods to investigate 

the thermal transport process. 

2.2 Classification of simulation methods
The simulation methods for micro/nanoscale heat conduction can be 

mainly categorized into two types, continuum simulations and 

atomistic simulations. The continuum simulations include the direct 

solution of BTE and the wave equation. The acoustic wave equation 

treats phonons as acoustic waves with linear dispersion relation and 
3thus neglects any nonlinearity and phonon-phonon scattering.  

However, because phonons have broad wavelength spectrum and 

nonlinear dispersion relation, and because phonon-phonon scattering 

is important, the wave equation is rarely used to describe phonon 
36, 37transport except for some specific situations.  Therefore it will not 

be discussed in this review in details. The BTE, on the other hand, is 
38 based on particle dynamics and thus neglect any wave effect. Since 

BTE is the governing equation for transport and scattering of energy 

carriers in solids (as shown in Fig. 4), it is widely used to simulate 

Fig. 3  The accumulated thermal conductivity of silicon at 100, 300, and 500 K calculated with the first-principles anharmonic lattice dynamics 

method. (a) Accumulation function with wavelength. (b) Accumulation function with phonon MFP.

mesoscopic conduction process. BTE describes the evolution of 
38 particle distribution function f (x, p, t), which denotes the fraction 

of particles that have position x and momentum p at time t. The 

general BTE has the form of
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here v denotes the velocity of particles, F is the external force (e.g. 

gravity, external electric force, etc), is the scattering term, and          

is a source term of particles. Note that BTE is a general governing 

equation that applies for microscale energy carriers, such as 

phonons, electrons, and photons. Since phonons do not interact with 

external force in general, and if we further assume there is no source 

term, then the phonon BTE becomes,
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Note that here we use n to denote phonon distribution function, 

following the convention and also distinguishing from the 

distribution function of other particles. To solve BTE, one needs a 

few input parameters, i.e., the group velocity v (travelling speed) and 

the scattering rates      of all the relevant scattering processes. The 

scattering is related to the nature of energy carrier, and the scattering 

rates can only be obtained from quantum mechanics. For phonons in 

non-metallic solids, the dominating scattering processes included 

phonon-phonon scattering, phonon-impurity scattering, and phonon-
38boundary scattering,  as shown in Fig. 4. Note that boundary refers 

to the geometric boundary of the piece of crystal. The phonon-

phonon scattering and phonon-impurity scattering are bulk 

processes, and phonon-boundary scattering is a surface or interface 
3phenomenon.  

These input parameters needed for solving BTE are related to 

the nature of the material (group velocity and bulk scattering terms) 

and thus should be taken as empirical values or more accurately 

obtained from atomic simulations. In addition, the boundary and 

interface conditions must also be provided to describe phonon-

boundary scattering. Once the distribution function is obtained by 

solving BTE, the temperature distribution and heat flux can then be 

extracted. BTE is in principle not limited by the scale of simulation 

 
s

n

t

¶æ ö
ç ÷
¶è ø

© Engineered Science Publisher LLC 201818 | ES Energy Environ., 2018, 1, 16–55

(a) (b)



Review  Paper ES Energy & Environment

domain, as long as the scale is large enough so that each element 

after domain discretization contains enough particles to properly 

define distribution function n(x,p,t). The solution of BTE converges 

to the macroscopic energy equation (i.e. heat diffusion equation) 

when the simulation domain is much larger than the transport MFP. 

Therefore, BTE is usually applied when the system is larger than the 

atomic scale and smaller than the diffusion regime.

Fig. 4  Different phonon scattering mechanisms. Phonon can scatter 

with impurities (and defects) and boundaries. Phonon can also scatter 

with other phonons, generally known as three-phonon scattering 

processes.

Fig. 5  The classification and relationship of different computational methods for heat conduction. The atomic scale methods take interatomic 

interaction from empirical potential or first-principles simulations and output thermal transport properties. BTE takes scattering rates and 

dispersion relation as inputs, which can be obtained from atomic scale simulations. With proper boundary conditions, BTE can be solved to 

output the distribution function, and thus the thermal transport properties. 

In contrast to the continuum simulations, atomistic simulations 

consider all details of atomic structures of materials. The widely 

used simulation methods for micro/nanoscale heat transfer include 
39molecular dynamics simulation, lattice dynamics simulation,  and 

non-equilibrium Green's function method. Molecular dynamics 

simulation tracks the evolution of atomic systems based on the 
40Newton's second law, which is a real-space treatment of atoms.  All 

heat conduction phenomena are naturally included in the atomic 

trajectories. The only problem is that it regards atoms as classical 

distinguishable particles, so the distribution function follows the 

Boltzmann distribution instead of quantum Bose-Einstein 

distribution. The difference between classical and quantum treatment 
41is negligible in the high temperature regime.  Lattice dynamics is a 

reciprocal space method which deals with normal modes (i.e., 
39 phonon modes). The phonon properties can be described by the 

phonon dispersion curve and phonon-phonon scattering matrix 
42elements.  The NEGF approach is an efficient tool to obtain phonon 

transmission coefficient when the elastic scattering is dominating in 

the transport process. All the three methods need the input of 

interatomic interaction, which can be obtained either from first-

principles DFT simulations (DFT is a method to numerically solve 

the Schrodinger equation, or more precisely the Kohn-Sham 
43equation)  or from empirical interatomic potential. The first-

principles simulation requires iterative solution of electron charge 

density of many-body systems and therefore usually requires very 
44high computational cost,  but it is quite accurate. It only needs the 

input of the initial atomic structure of the material, but the 

computational cost will limit such calculations to a few hundreds of 

atoms. The empirical potentials assume certain analytical formula 

for interatomic interaction, which are fitted with first-principles data 

or experimental results. They are much faster in calculating 

interatomic forces compared to first-principles simulations and can 

deal with millions of atoms, but the accuracy is limited. Since MD 

simulations of thermal transport need large atomic systems to reduce 

possible simulation size effect and many time steps to reach 

equilibrium, they are usually combined with empirical potential. 

Lattice dynamics and NEGF can be combined with either first-

principles method or empirical potential. The first-principles method 

is clearly more accurate. The classification and relationship of 

different simulation methods for heat conduction are summarized in 

Fig. 5. In the subsequent sections, we will discuss these methods in 

details.

3. First-principles PBTE methods
Before we start to introduce the first-principles PBTE method, 

different terminologies used in literature should be clarified. Strictly 

speaking, first-principles method (also known as the ab initio 

method) refers to an approach to numerically solve Schrodinger 
43equation.  Anharmonic lattice dynamics or lattice dynamics takes 
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45the IFCs to generate phonon dispersion relation and relaxation time.  

BTE takes the phonon dispersion and relaxation time as inputs to 

obtain total thermal conductivity. The so-called first-principles BTE 

method refers to the combination of the three methods. It is 

sometimes called “first-principles phonon BTE method”, “first-

principles anharmonic lattice dynamics method”, or even just “first-

principles method” in literature. In this section, we will discuss the 

framework of BTE and anharmonic lattice dynamics method, which 

are more focused on heat transfer. The general first-principles 
43method is well documented in a book,  and will not be presented 

here. The purpose of first-principles method here is to generate IFCs. 

For metal calculations, it also helps to generate electronic band 

structures and electron-phonon matrix elements. In this section, we 

will first show how to obtain the relationship between thermal 

conductivity and phonon properties by phonon BTE. Then the lattice 

dynamics method will be introduced. The electron-phonon coupling 

is then discussed.

3.1 Thermal conductivity and BTE
The discussion will be first focused on non-metallic crystals, where 

phonon is the dominating heat carrier. We will show the theoretical 

framework of predicting lattice thermal conductivity based on 
46,47anharmonic lattice dynamics and the linearized BTE.   Some of 

our derivations in this section are adapted from Ref. 48 and 49. 

Based on Fourier's law, the thermal conductivity  of a material κ

measures its ability to conduct heat and is defined by 

In order to establish the relationship between lattice thermal 
conductivity and phonon properties, we further consider a finite 
temperature gradient established across a solid. The microscopic 

49expression for the heat flux contributed by phonons is

 1
n

V l l l
l

w= åJ vh ,                               (8)

where  is the volume of the solid that can be calculated with     V
           .� � � � � is the number of wave vector  points and  is the q Ω
volume of the unit cell. Because�������������������and the net heat flux 
under equilibrium state would be zero, Eq. (8.) can be rewritten (in �β
direction) as
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V
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When the temperature gradient is in  direction, Eq. (7.) will � �α

become                           and we can plug it into the Eq. (9.) to yield
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By comparing this equation with the Fourier's law   ,                     

we can get an expression for the thermal conductivity
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J b abk

a
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The volumetric heat capacity is related to the phonon distribution
 
function by                        , and thus we can rewrite Eq. (11.) as

 c v  vab a b
l l l l

l

k t=å .                             (12)

 T= - ÑJ κ ,                                       (4)

where J is the heat flux vector and ÑT is the temperature gradient. 

The thermal conductivity κ is a tensor in this equation. To predict 

thermal conductivity from atomic scale simulations, the relationship 

between heat flux and temperature gradient should be derived. For a 

phonon mode  that consists of both wave vector q and phonon λ

branch n , the distribution function n  follows the BTE, Eq. (3.). λ λ

Under linearization assumption, the diffusion term can be expressed 
48,49as    n

n T
T
l

l l l

¶
Ñ = Ñ

¶
v v ,                               (5)

where  is the group velocity of phonon mode . The scattering  v λλ

term on the right hand side of Eq. (3.) also needs to be simplified. A 

phonon relaxation time  is defined with the following equationτλ
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Note that Eq. (12.) relates the phonon properties with the 

macroscopic definition of thermal conductivity, which is the more 

rigorous version of the kinetic theory Eq. (1.). In the following 

sections, we will explain how to calculate the heat capacity ���, group 

velocity      and relaxation time     from lattice dynamics method. 

3.2 Harmonic and anharmonic lattice dynamics
The harmonic lattice dynamics takes the second-order IFCs to obtain 

the phonon dispersion relation . If the dispersion relationship is ����     
obtained, the specific heat of mode  can be calculated. The group λ

velocity of phonon mode  is the gradient of frequency with respect λ

to reciprocal space coordinates                       . The phonon relaxation 

time should be obtained from the anharmonic lattice dynamics 

calculations, which need second-order (or harmonic) IFCs and 

higher-order (or anharmonic) IFCs. The details will be presented in 

this section. 

For a periodic crystal, the potential energy  can be expanded U

with atomic displacements around their equilibrium positions as the 

Taylor series

c
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lv  lt
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where  is the equilibrium potential energy,                           are the U0

displacements of i-th atom in  direction, j-th atom in  direction, α  β

and k-th atom in  direction, respectively.  are the second-order γ      

iua , ju
b , and 

ku g  

 ij
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where                   is the deviation of distribution function from 

equilibrium �����. Phonons are bosons and the equilibrium distribution 

follows the Bose-Einstein statistics , where                                                  

is reduced Planck constant and � � � � � is Boltzmann constant.�  ω  λ
denotes the phonon frequency and  represents the temperature. T

Under the steady state and finite temperature gradient assumption, 

the deviation of distribution from equilibrium is small,  so that                               

49                     in Eq. (5.).  If we further assume steady state and neglect
 
the time dependent term, we can get the linearized BTE,

 0n n nl l l¢ = -

 h

 0nl
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e l
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IFCs and        are the third-order IFCs.     represents the higher-     

order terms. The force acting on each atom is� ��������������and if all the 

atoms are at equilibrium state,���������, so there is no first-order term 

in Eq. (13.). Under  harmonic approximation and only keeps the 

second-order term, we can easily get . If the i-th atom ,                        

in the crystal is the b-th atom in the l-th unit cell and atomic index j 

corresponds to  in a similar convention, one can get the (l’,b’)

following equation from Newton's second law of motion

 ijk
abgY

 ( )4O  u

 i i
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where  is the mass of the b-th atom. is the acceleration of the m         b

atom  in  direction at time . Plane wave solutions for the (l,b) tα
equation above can be found as
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where      is the eigenvector of b-th atom for phonon mode ������ is ,

the amplitude of the wave.  is the lattice vector for the l-th unit Rl

cell. It should be noted that in this equation i is the imaginary unit, 

not the atomic index. By substituting Eq. (15.) into (14.) we can get 

the following equation

 ,b le  l. lL  

 ( )2
, ,'bbb b

ab
l l lw = qe D e ,                             (16)

49 where  is the “D-type” dynamical matrix that is expressed asD
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Solving Eq. (16.) one can obtain the phonon dispersion relation .        

 

Phonon scattering mechanism and relaxation time

As shown in Fig. 4, the scattering term in BTE includes 

phonon-phonon scattering, phonon-boundary scattering, and 

phonon-impurity (isotope, defects) scattering, etc. It can be seen 

from Eq. (6.) that the phonon relaxation time  is defined through τλ

the scattering term and we need to quantitatively analyze the 

scattering mechanisms in order to calculate .τλ

1) Phonon-phonon scattering

As shown in the lattice dynamics method, phonons are analyzed 

with the plane wave model. From wave-particle duality, we know 

that wave can also be described as particle. By analogy with the 

photons of the electromagnetic field, the quanta of the lattice 
48vibrational field are referred to as phonons,  which follow the 

50 quantum-mechanical rules. With quantum-mechanical methods, the 

Hamiltonian for the crystal with potential energy  is in the form ofU

 (  )w q

where the atomic index i corresponds to ,  j corresponds to   (l b)�, �� ������,
and k corresponds to  is the momentum operator for the ����������� �����
b-th atom in l-th unit cell. Here, we only discuss the three-phonon 

scattering processes since it is the dominating process and prevails in 

literature. (Note that the theoretical framework of four-phonon 
51,52scattering process has also been recently reported. The �

Hamiltonian can be separated into harmonic and anharmonic terms. 

In quantum mechanics, such a problem will be first solved with the 

harmonic oscillator model and then analyzed by adding the 

 ( )'',l b

( )''', 'l b . ˆ
lb

p  

anharmonic perturbation.

We can introduce the intrinsic transition probability term ������
for simplicity in the following derivation

 (   ) Q
lll
±
¢¢¢

where the  denote Kronecker delta function and  designates the D δ

Dirac delta function. With Fermi's golden rule, the scattering 

probability for the process satisfying                       can be derived, as 
l l lw w w¢ ¢¢+ =

 

Similarly, we can express the scattering probability for 

processes satisfying ���������������������as 
l l lw w w¢ ¢¢= +

 

The total scattering probability for three-phonon scattering processes 

is then

This equation will be used to calculate relaxation time due to 

phonon-phonon scattering.

2) Other scattering mechanisms

The other scattering mechanisms except phonon-phonon 

scattering include phonon-impurity scattering, phonon-boundary 

scattering, phonon-electron scattering, phonon-grain boundary 

scattering, and phonon-defect scattering, etc. There have been 

empirical equations to consider phonon-impurity scattering and 

phonon-boundary scattering by treating them as relaxation times. 
53The scattering rate due to phonon-impurity scattering is shown as
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where p is the specularity parameter of the boundary and L  is the 0

effective boundary mean free path in the Casimir limit. We need to 

emphasize here that phonon boundary scattering is a surface 

phenomenon, which is different from other scattering mechanisms, 

which are bulk behavior. If the phonon boundary scattering is 

regarded as a relaxation time, it actually assumes that the boundary 

scattering can be averaged as a bulk scattering process, which is a 

significant assumption. Rigorous treatment of phonon-boundary 

scattering requires solving the phonon BTE with proper boundary 

conditions and will be discussed later in Sec. 6. 
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where                                              is the  concentration  of  impurity 

atom . The average mass is calculated with                               . is � s  N0

the number of wave vector  points.q

The following equation is used to calculate the relaxation time 
49due to boundary scattering
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SMRTA and iterative solution.

With non-equilibrium introduced by a small temperature 

gradient, the phonon distribution function will deviate from 

equilibrium distribution,

 0 'n n nl l l= +  (25)

This applies to all the phonon modes. The deviation  depends on     

the phonon distribution function of all other phonon modes. The 

single mode relaxation time approximation (SMRTA) method 

assumes that when we calculate the phonon distribution function for 

a specific mode, other phonon modes stay in their equilibrium states,
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It means that the distribution of phonon mode deviates from λ 
equilibrium, while the other phonons are still in equilibrium. For 

processes with               , we can prove the following relation              
                                            
                                           . Plug the Eq. (26.) into Eq. (20.) and 

use this relation to simplify the expression, we can get
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For processes with , we can show that the relation                       

                                             

                                                will be satisfied. We can then plug 

Eq. (26.) into Eq. (21.) and use this relation to simplify the 

expression to get

 
l l lw w w¢ ¢¢+ =

With Eq.(6.), (27.), and (28.), the relaxation time due to 

three-phonon scattering processes        can be derived as pp
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If we further consider the phonon-impurity scattering and 

phonon-boundary scattering in the calculation, the total relaxation 
, 49 time can be calculated with Matthiessens rule
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The superscript 0 in  indicates the relaxation time calculated    

with SMRTA. This result can then be combined with Eq. (12.) to 

predict the lattice thermal conductivity. 

With full iterative method, the deviation of distribution of all the 

three phonons are considered, as shown below

 0
lt

Since less assumptions are made, the iterative method can be 

more accurate than the SMRTA, especially for high thermal 

conductivity materials or at low temperature, when normal process 

of phonon-phonon scattering is important. Due to the page limit, the 

details of iterative solution will not be presented here. Interested 
54,55 readers are referred to related literature.

Implementation and application of first-principles BTE method

To implement the algorithm described above is quite 

challenging. The general workflow to calculate phonon thermal 

conductivity is show in Fig. 6. The first step is to extract the IFCs, 

from either classical potential or first-principles calculations. Since 

first-principles calculations can predict the ground state energy quite 

accurately without any input parameters, anharmonic lattice 

dynamics is usually combined with first-principles method. To 

accurately extract IFCs from first-principles simulation is not a 

trivial task. Currently, the most widely implemented approach to 

extract IFCs takes from atomic forces F(u ) calculated from first-i

principles. One can generates atomic configurations by displacing 
56certain atoms and using finite difference method to obtain IFCs.  

Alternatively, one can randomly displace atoms to get atomic forces 

as a function of atomic displacements, and then use numerical fitting 
57techniques, such as singular-value decomposition  and compressive 

58sensing  to extract the IFCs. Both approach requires single-point 

DFT calculations of a large supercell for many configurations, which 

requires large computational cost. Another approach is to employ the 

linear response theory to directly obtain IFCs, also known as 
59density-functional perturbation theory (DFPT).  In all of these 

methods, considering the crystal symmetry is very important to 

reduce the computational cost. Another issue is the cutoff of IFCs. 

The IFCs theoretically should go over all atoms in the crystal. In 

reality, only the atoms that are close enough have a large enough IFC 

that should be considered. Therefore, a cutoff distance should be 

chosen and its effect on the lattice thermal conductivity should be 
60carefully tested.  

Fig. 6  The general numerical workflow for the first-principles BTE 

method. The harmonic and anharmonic IFCs are first extracted from 

the DFPT or the first-principles forces. The phonon specific heat and 

group velocity can be obtained from the harmonic lattice dynamics, 

and the scattering rates are extracted from the anharmonic IFCs. 

Then the thermal conductivity can be obtained by relaxation time 

approximation or the iterative solution of phonon BTE.

Due to the numerical uncertainty and the cutoff imposed to the 
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force constants, these raw IFCs from first-principles calculations 
61generally do not satisfy invariance conditions  that should be 

satisfied. The translational invariance condition has been proven to 

be significant to the accurate prediction of lattice thermal 

conductivity values, so it is usually artificially imposed by adding 
62small compensation to each term in force constant.  The thermal 

conductivity values can then be predicted using the anharmonic 

lattice dynamics method, with either SMRTA or the more accurate 

iterative method. 

The first-principles method combined with anharmonic lattice 

dynamics is a very accurate method to predict the thermal 

conductivity without any fitting parameter. Many calculations based 

on this method has shown that the predicted thermal conductivity 
47values agree well with experiments.  Several sources of 

uncertainties can still be induced within the numerical calculation 

process. For example, the IFCs, especially the anharmonic IFCs can 

have some inaccuracy, due to the inaccuracy of first-principles 
63calculation, choice of cutoff, and the finite difference method.  The 

numerical integration within the first-Brillouin zone can also induce 

discretization error. Nevertheless, this is by far the most powerful 

tool that allows one to predict the lattice thermal conductivity of 

crystalline materials with the only information of initial atomic 

structures. On the other hand, it allows one to extract the thermal 

conductivity of each phonon mode (mode-resolve thermal 

conductivity). These results can be further combined with numerical 

solution of BTE to predict the lattice thermal conductivity of 

nanostructures. 

To date, researchers from different groups have developed many 

different open source packages to implement the anharmonic lattice 
56 64 65dynamics calculations, such as ShengBTE,  AlmaBTE,  phono3py,  

59 66d3q,  AFLOW-AAPL,  etc. These packages are nicely interfaced 

with first-principles simulation tools, especially VASP and Quantum 

Espresso. 

With this approach, Broido et al. first reported the full first-

principles thermal conductivity prediction of Si and Ge without any 

adjustable parameters and the calculation results are comparable 
15with experiments.  Turney et al. extracted force constants from 

Lennard-Jones potential and predicted the thermal conductivity of 

Argon and compared the results with molecular dynamics 
45simulations in 2009.  This method has been applied to numerous 

Fig. 7 The measured thermal conductivity of BAs and the 

predictions from first-principles PBTE approach considering 

different scattering mechanisms. One can see that if only three 

phonon scattering is considered, the predicted lattice thermal 

conductivity is much larger than the experimental value. If four 

phonon process is further included, the predicted value agree quite 

well with experimental value in a relatively broad temperature range. 

@copyright from Ref. 68 with permission from AAAS.

56materials, especially after 2015 when relevant software packages  

becomes publicly available. The readers are referred to some review 

articles, such as Ref. 46 and 47 on the application of the anharmonic 

lattice dynamics method to different materials. One of the most 

notable contribution is the successful prediction of the ultrahigh 

lattice thermal conductivity of cubic boron arsenide (BAs) in 2013, 
67which is about 2240 W/mK at room temperature.  The ultrahigh 

thermal conductivity is due to the large phonon band gap between 

acoustic and optical phonon branches, which significantly reduces 

the phonon scattering rates. Four-phonon scattering processes in 

BAs are further considered in 2017, and it reduces the room 
52temperature thermal conductivity to about 1400 W/mK.  

Nevertheless, it is still among the most heat conductive 

semiconductor materials. Only very recently in 2018, high quality 

cubic BAs has been fabricated by three different groups and thermal 
67-69conductivity is reported to be 1000~1300 W/mK.  Since the results 

from the three different groups are similar, we select the results 
68obtained by Kang et al  and show in Fig. 7. The theoretical 

prediction and then experimental validation of a new material is a 

good example to demonstrate the significance of this powerful 

predictive tool. 

Fig.  8 (a) The atomic structure of graphene and silicone. They have the same hexagonal lattice, but silicene has a small bulking and thus does 

not have reflectional symmetry in the z direction. (b) The predicted lattice thermal conductivity of graphene, adopted from Ref. 74. It can be seen 

that ZA modes have dominate contribution. Also, the SMRTA (denoted as RTA in the figure) predicted result is much smaller than the full 

iterative solution (denoted as Total). (c) The lattice thermal conductivity of silicene decomposed into different directions. It can be seen that the z 

displacement has a very small contribution to the lattice thermal conductivity, which is quite different from graphene. Reproduced from Ref. 74  

and 83, with permission from American Physical Society.
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Such a method has also been applied to low dimensional 
70 71 20,7 2-74structures, including nanowire,  thin films,  graphene,  and other 

60, 75-772D materials,  etc. Here we just briefly review the thermal 

transport investigation of 2D materials. In 2010, Lindsay employed 

the optimized Tersoff potential to investigate the lattice thermal 
78conductivity of graphene.  It has been shown that iterative approach 

is very important to correctly predict the thermal conductivity of 

graphene, since the Normal process is important. The major 

contribution of out-of-plane vibrational modes (the flexural branch, 

or ZA mode) to the lattice thermal conductivity in graphene has also 
79been identified.  Due to the reflectional symmetry, the three-phonon 

scattering events involve odd number of ZA modes are forbidden, 
78which give rise to a high ZA phonon lifetime.  There are many 

subsequent calculations on graphene, employing IFCs from first-
72,74,80,81principles simulation, which basically confirms these findings.  

The predicted thermal conductivity of graphene is generally on the 

order of 3000 W/mK, which agree well with experimental results. 

Note that all these calculations only consider three-phonon process. 

A recent work using the empirical optimized Tersoff potential 

indicates that four-phonon scattering can reduce the contribution of 
82out-of-plane mode to the thermal conductivity at room temperature. 

As shown in Fig. 8, the thermal conductivity of silicene, a 

cousin of graphene, has also been investigated and the thermal 

conductivity is much lower, due to the bulking structure that breaks 
60,75,84the reflectional symmetry.  The thermal conductivity of other 2D 

materials have also been investigated, including metal 
76,85 86,87dichalcogenide  and black phosphorene,  etc. Unlike bulk 

materials, less consistency has been found in the reported thermal 

conductivity values of 2D materials. There has been a few possible 
75 reasons. First, although there were debates, now it becomes clear 

that the flexural branch should have a quadratic dispersion at zero 
63,88strain and becomes linear when an infinitesimal strain is applied.   

However, it is very difficult to obtain the quadratic dispersion for 

two reasons. First, it is difficult to avoid strain in first-principles 

simulations. Second, the numerical uncertainty of harmonic FCs 

makes it difficult to satisfy invariance conditions, and the rotational 

invariance is shown to be important to obtain a quadratic 
88dispersion.  The inaccuracy of anharmonic IFCs could be another 

63issue for the inconsistency.  The choice of cutoff distance for IFCs 

should be carefully tested when considering the anharmonic IFCs 
61and the acoustic sum rule  should be properly applied. It has also 

been shown that the intrinsic force inaccuracy from first-principles 

calculation could also affect the correct prediction of thermal 
63conductivity of 2D materials.  In short, the first-principles BTE 

method should be carried out with care when applied to 2D 

materials. 

Another important aspect of this method is that it can obtain the 

thermal conductivity of each phonon mode, or the mode-resolved 
89thermal conductivity.  This allows us to construct the wavelength 

accumulation function and the mean free path accumulation function 

of thermal conductivity, as shown previously in Fig. 3. This 

information guides the material design and allows us to better 
90engineer the lattice thermal conductivity of solid materials.  It can 

also serve as an input to the numerical solution of BTE, as will be 

discussed later in Sec. 6. 

 

3.3 Electron-phonon coupling in metal and doped 

semiconductors
As shown in Fig. 2, in metals and doped semiconductors, heat is 

carried by both electrons and phonons, and hence the total thermal 

conductivity can be decomposed into the electron and phonon parts,   

            . Electronic contribution dominates the heat transfer in 

metals, but phonon contribution can also be important. In metals, 

temperature gradient drives the transport of both electrons and 

phonons. Electron-phonon scattering is the limiting factor of the 

transport process. Electron scattering by phonons is the major reason 

for finite MFP of electrons. On the other hand, it also adds one 

additional scattering channel for phonons. The electron-phonon 

scattering can be understood from different pictures: one can regard 

electrons and phonons as particles and they scatter with each other 

during transport process; alternatively, electron-phonon coupling can 

be regarded as the perturbation of electronic eigenstate (wave 

function) under the lattice vibration. 

The phonon-electron (p-e) scattering rate can be obtained from 
91Fermi's golden rule (FGR).  The electron-phonon (e-p) matrix 

element, which describes the rate of an electron at initial state is ,       
92scattered to   by a phonon mode                 , is defined as,             
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where    is the ground-state Bloch wave function, denotes the      
43first-order derivative of the Kohn-Sham potential  with respect to 

the phonon displacement, k is the wave vector of the initial electron 

state, and i, j denote the electronic band indices of the initial and 

final states, respectively. Note that due to the momentum 

conservation requirement, the final state must have a wave vector of 

k+q. This parameter can be extracted in the DFPT calculations from 
93Wannier function interpolation.  The accurate calculation of e-p 

scattering matrix element requires deep understanding of the density 
43functional theory  and solid state physics, which used to be a 

challenging task. Fortunately, such calculations were implemented in 

first-principles packages very recently, such as Quantum Espresso 
94with EPW (Electron-Phonon coupling using Wannier functions).  As 

such, if one is only interested in the transport properties of solids, 

one can start with the e-p matrix elements, which can be directly 

obtained from the existing open source code.  

Under the relaxation time approximation, the scattering rate 

(i.e. the inverse of relaxation time τ) of phonon mode    is the sum of 
91all the possible phonon-electron scattering processes , i.e., 
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where  is the e-p interaction matrix element,  is the Fermi-Dirac g f

distribution function,  and  are electron band indices,  is the i j ε

electron energy, and  is the phonon frequency. δ function here is to ω

ensure the conservation of energy during the scattering process. Note 

that to accurately calculate the scattering rate, Brillouin zone 

integration with very fine k mesh and q mesh is required. With the 

obtained phonon scattering rate by considering phonon-electron (p-

e) and phonon-phonon (p-p) scattering process, the total phonon 
49 relaxation time can be obtained using Matthiessen's rule as 

following

 1        1        1
p pp

l lt t ep

lt
= +  .                            (34)

With the phonon-phonon scattering rate     calculated from the 

anharmonic lattice dynamics calculations as described above in Sec. 

3.2, the total scattering rate of phonons can be determined. Then 

combining with Eq. (12.), one can calculate the lattice thermal 

conductivity of metals or doped semiconductors.
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To further obtain the electron contribution, the Onsager 

relations, derived with electron BTE, can give the electronic 
91transport properties .
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Implementation and applications

To calculate the aforementioned quantities and obtain the 

electron and phonon thermal conductivity of metals, one first need to 

perform first-principles calculation to obtain the electron band 

structure  and wave functions, which are direct output of DFT  ε(k)

calculations. For phonon thermal conductivity, the phonon-phonon 

and phonon-electron scattering are considered. The phonon 

dispersion curve and phonon relaxation times (due to phonon-

phonon scattering only) should be calculated using harmonic lattice 

dynamics, which is the same as non-metals. Moreover, the phonon 

property should be combined with Kohn-Sham wave functions to 

further calculate the electron-phonon scattering matrix elements. It 

should be noted that the electron-phonon scattering matrix elements 

are initially obtained on coarse electron and phonon wavevector 

grids and then interpolated to finer electron and phonon wavevector 
  grids using the maximally localized Wannier functions basis as 

94,95implemented in the electron-phonon Wannier (EPW) package.  

Then, proper Brillouin zone integration needs to be performed to 

obtain the phonon relaxation time due to phonon-electron scattering, 

and the electron relaxation time due to electron-phonon scattering. 

Note that the Brillouin zone integration is not trivial, proper choice 

of discretization mesh is important to obtain correct and accurate 

results. Now most of the calculations can be carried out with the 
94, 95 EPW package.

The full first-principles calculation of thermal property of noble 
96metals are reported in 2016.  The lattice thermal conductivity values 

at room temperature are found to be 6, 4, and 2 W/mK respectively 

for Al, Ag, and Au. The electron thermal conductivities are 246, 370, 

and 276 W/mK, respectively. The predicted results of total thermal 
96 97conductivity agree well with experimental values.  Wang et al.  also 

calculated the lattice thermal conductivity of more metals, including 

Cu, Ag, Au, Al, Pt, and Ni. It was found that the effect of electron-

phonon coupling to lattice thermal conductivity is found to be 

important in Pt and Ni than in other materials. In 2017, Tong and 
98Bao  calculated the electron and phonon thermal conductivity for 

intermetallic compound NiAl and Ni Al, the reported value also 3

agree very well with experiment, as shown in Fig. 9. It is found that 

the electron-phonon coupling is also important in both materials. 

Lattice thermal conductivity is more important at lower temperature 

regime, and its effect decays as temperature is higher. 

In addition to metals, the electron-phonon coupling calculation 

is also important in other aspects of thermal transport. For example, 

in heavily doped semiconductors, it has been reported that the 

Fig. 9 Variation of phonon thermal conductivity (k ), electron thermal conductivity (k ) and total thermal conductivity (k  = k  + k ) with p e total p e

temperature for (a) NiAl and (b) Ni Al. Reproduced from Ref. 98, with permission from Elsevier.3
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where     ,  and  are 3×3 tensors.      is the electrical conductivity,  S K S

is the Seebeck coefficient, and  is related to the electron thermal K

conductivity                , where  is the temperature. The summation T

in these three equations is over all the electrons enumerated using 

electronic wave vector k and band index . The  is the elementary  i e

charge,  is the number of electrons per state,  is the volume of n Vs

primitive cell,  is the Fermi-Dirac distribution,      is the electron fik

energy,  is the chemical potential,                  is the electron velocity, μ

α and β denotes the directional component, and  is the electron    

transport relaxation time. The electron transport relaxation time, 

limited by e-p scattering, can be obtained by considering the 
91electron-phonon interactions as
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Fig. 10  The lattice thermal conductivity of silicon versus the carrier 

concentration, taking into account electron-phonon coupling and 

phonon-phonon interaction. Note that phonon-impurity scattering 

was not considered so the thermal conductivity values cannot be 

directly compared with experimental results. Reproduced from Ref. 

99, with permission from American Physical Society.

phonon-electron scattering can significantly reduce the lattice 
99-101thermal conductivity.  Note that in doped semiconductors, the 

doping atoms themselves also affect thermal conductivity through 

phonon-impurity scattering, but the results only considered the 

phonon scattering with the charge carriers induced by the dopants. 

Therefore, the calculated results cannot be directly compared with 

experimentally measured thermal conductivity data for heavily 

doped semiconductors. Another important application of this method 

is to model the non-equilibrium process in energy carrier dynamics. 
102For example, Vallabhaneni et al.  calculated electron-phonon 

scattering and combined with multi-temperature model, to simulate 

the thermal measurement of graphene using Raman spectroscopy. It 

was found that non-equilibrium in phonon distribution will affect the 

temperature measurement. The Raman spectra reflect the optical 

phonon temperature, while the more thermally conductive acoustic 

phonons have lower temperature. The prediction has been validated 
103by experiment recently.  

4. Molecular dynamics simulation
The molecular-dynamics (MD) simulations technique can provide a 

classical description of the dynamic evolution process of the N-atom 
104,105system.  During the MD simulations, the information of each 

atom, including atomic position x , velocity v , and force F , is i i i

calculated at each step, which is then used to predict the properties in 

the next step. In the dynamic process, the motion of each particle is 

described by the Newton's second law: 

where m  is the mass of atom i, and        is the force exerted by atom j i

on atom i. The force term is derived from the interatomic potential 

that must accurately fit the potential energy surface. Obviously, the 

interatomic potential greatly affects the accuracy of MD simulations. 

The commonly used empirical potentials are pairwise interactions, 

such as Lennard-Jones potential and Morse potential. In addition, 

other potentials also include three-body interaction for structure 

stability, such as Stillinger-Weber potential and Tersoff potential. It 

should be noted that as a classical system, all the modes (degrees of 

freedom) are equally excited in MD simulation. However, at low 

temperature, high-frequency modes are frozen in the quantum 

system, which deviates from the classical case. Quantum 
41corrections  are used to qualitatively account for this discrepancy.

Phonons are the main heat carrier in semiconductors and 

insulators, and the dynamics of lattice vibration can be well captured 

in MD simulation at evaluated temperature. Furthermore, the MD 

simulation has the advantages of implicitly modeling the anharmonic 

phonon-phonon interaction to all orders, compared to the limitation 

of handling only three-phonon or four-phonon scatterings in most 
52,106first-principles BTE calculations.  Moreover, MD simulations are 

also effective to study various realistic effects on thermal transport, 
107 108 109,110 111including folding, strain,  defects,  dislocation,  grain 

112 113boundary,  doping,  and so on. In addition to the prediction of 

thermal conductivity, MD simulations are also widely used to 

analyze the thermal transport behaviors and provide valuable insight 

to the understanding of underlying mechanisms.

4.1 EMD and NEMD simulations
There are two commonly used methods to calculate the thermal 

transport properties, for instance lattice thermal conductivity, based 
1,114-116on MD simulations.  The first method uses equilibrium MD 

(EMD) simulation, which calculates the thermal conductivity based 

on the fluctuation-dissipation theorem using Green-Kubo formula. 

Thus, this method is also known as Green-Kubo method. The second 

method is based on the Fourier's law of heat conduction, in which 

the non-equilibrium temperature distribution and heat flow are 

directly monitored under a temperature gradient. Therefore, this 

method is conducted under a temperature bias in the non-equilibrium 

MD (NEMD) simulation, and is also known as the direction method. 

In the next section, these two methods are described in details. 

   

EMD simulations

Thermal conductivity The Green-Kubo method computes lattice 
118thermal conductivity based on the fluctuation-dissipation theorem  

of heat current in EMD simulations. In details, the lattice thermal 

conductivity can be computed from the heat current auto-correlation 

function (HCACF) based on Green-Kubo formula as

 (39)
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in which    is the heat current in the αth direction,    is the Boltzmann 
constant, T is system temperature, and V is the system volume. The 
angular bracket means the ensemble average. One advantage of 
Green-Kubo method is that one can get the thermal conductivity 
tensor along different directions with the same set of EMD 
simulation results. For isotropic bulk materials, thermal conductivity 
is usually averaged over three diagonal components so that a factor 
of three will appear in the denominator of Eq. (40.). For one-
dimensional materials, such as the carbon nanotube, HCACF is 
computed along the axial direction. 

115In EMD simulation, the heat current is defined as
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Fig. 11 The calculations of thermal conductivities from EMD and 

NEMD simulations. (a) The normalized heat current autocorrelation 

function from EMD simulation for raw data (red line) and double 

exponential fitting (blue line) before the cut-off time in a 4 × 4 × 4 

supercell for bulk silicon. The inset of (a) show the long time region 

near the cut-off time. (b) Temperature distribution in a hexagonal 

nitride boron ribbon from NEMD simulation. The inset of (b) shows 

the thermal conductivity of infinite system by using the extrapolation 

method. Reproduced from Ref. 117, with permission from Elsevier.

where         and        are the time-dependent total energy and 

coordinate of the ith atom, respectively. The expression of heat 

current can have complex form, depending on the specific terms in 

the interatomic potential (e.g., many-body potential). Take the 

widely used pairwise potential for instance, the heat current in Eq. 
119 (41.) can be written as

 

where F  is the interatomic force acting on atom i due to the pairwise ij

interaction with atom j. In Eq.(42.), the first term describes the 

convection contribution, and the second term is the conduction part. 

Benefit from pairwise empirical potential in MD simulation, the 

pair force F   in Eq.(42.) can be easily calculated from the derivative ij

of the pair potential. Moreover, when considering many-body 

interactions, such as Stillinger-Weber potential, extra terms 

containing three-body force F should also be included in the ijk
115expression of heat current.  Different from the kinetic theory that is 

only applicable to crystalline solids, the Green-Kubo method has 

been widely used to calculate thermal conductivity of various 

materials, including disordered systems in which the phonon gas 
120picture is invalid.   

The main challenge in EMD based thermal conductivity 

calculations arises from the difficulty to carry out the time integral 

up to infinity and ensure its convergence. There are mainly two types 

of implementations of the Green-Kubo method in literature: one is 

the time-domain approach, and the other is the frequency-domain 

approach. 

The time-domain approach is to handle HCACF in time-

domain. The most straightforward way is the direct integration 

method, which replaces the integral with summation and numerically 

records HCACF in time-domain as 

 (44)

In this direct integration method, the finite cut-off time in the t  c

integration should be long enough to ensure the proper decay of 

HCACF. For a given finite time EMD simulation, first avalanche 

method has been proposed to accurately determine the cut-off time 
117based on the statistical analysis of HCACF.

Another widely used approach is based on the relaxation time 
117,121-123 fitting. Because of the different relaxation times for acoustic 

and optical phonons, HCACF generally exhibits a two-stage 

decaying behavior, with a very fast acoustic decay at the beginning 

and followed by a much slower optical decay. Thus, HCACF can be 
122fitted by the double exponential function.  In consideration of the 

large relaxation time of long wavelength phonons and the finite cut-
117off time (as shown in Fig. 11), Chen et al.  proposed a nonzero 

correction to this fitting method, 

 
 (45)

where A and A are two fitting parameters, and  are the relaxation 1 2 τ τ1 2

time obtained from the fitting, and Y  is a tiny nonzero value for 0

correction. Correspondingly, the thermal conductivity can be 

calculated as 

 (46)

The nonzero correction term accounts for the contribution from 

long wavelength phonons that have relaxation time longer than the 

cut-off time. 

The frequency-domain approach is to handle the time integral 

indirectly via Fourier transform. For instance, the bulk thermal 

conductivity from Green-Kubo formula can be viewed as the Fourier 

transform of HCACF, and one can define the spectral thermal 

conductivity as
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where t  is the time step, N is the total number of time steps recorded 0

in EMD simulations, and             is the integer number for time 

t. Furthermore, the infinite time integral is replaced by a summation 

up to a finite cut-off time t   c
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where J(ω) is the spectral heat current defined as 

 (49)

124Based on the relaxation time approximation, Volz et al.  

proposed to fit the spectral thermal conductivity as 

in which κ(0) and τ are the fitting parameters, corresponding to the 0 

static thermal conductivity and single exponential decay constant.  

Moreover, the bulk thermal conductivity from EMD simulations 

also exhibits the finite size dependence due to the use of periodic 

boundary condition. Therefore, in most of practical calculations, in 

addition to the autocorrelation time, the convergence on simulation 
116, 120, 125, 126 domain size should be carefully tested and verified.

The EMD simulation method has been widely used to predict 

the lattice thermal conductivities of various materials. For example, 
124,127Volz et al.   used EMD method to predict the thermal 

conductivity of bulk silicon crystals and silicon nanowires. The 

suppressed thermal conductivity in silicon nanowires and 

temperature dependence is also observed from the EMD 

calculations. In addition, further engineerings of thermal 

conductivity in silicon crystals are widely studied by using EMD 
128method, such as silicon nanotube,  and Si-Ge core-shell 

125,129nanowires,  etc. The results show that the structural engineering 

can induce significant phonon scatterings, which further reduces the 

thermal conductivity dramatically. 

On the other hand, the EMD method is also widely used to 

study the thermal conductivity of novel bulk materials that with 
120,123,126accurate interatomic potential, such as carbon-based materials,  

130 83,131PbTe,  new two-dimensional materials,  etc. For example, by 
123using EMD method, Ye et al.  reported that thermal conductivity of 

-1 -1body-centered tetragonal C  reaches ~1200 Wm K  in the cross-4

plane direction at room temperature, and is highly anisotropic. 
126Zhang et al.  computed thermal conductivity of carbon schwartizes 

and found that the Gaussian curvature has a significant impact on 

thermal transport. 

Interfacial thermal resistance In addition to the thermal 

conductivity, the classical EMD simulation has also been applied to 

calculate the interfacial thermal resistance between different 
132materials based on temperature fluctuations. Rajabpour and Volz  

demonstrated that the interfacial thermal resistance can be defined as

 (51)

in which the subscripts 1, 2 represent the two interacting surfaces 

around interface, T is the temperature difference between the Δ

interacting atoms of the two surfaces, A is the interfacial area, and N      1,2

is the number of degrees of freedom at each side. During the EMD 

simulation, the temperature fluctuation at the interface is recorded as 

a function of time. Then, the interfacial thermal resistance is 

calculated based on Eq. (51.). By using this EMD method, 
133Rajabpour and Volz  further demonstrated the existence of a 

universal interfacial thermal resistance at high frequency, which only 

depends on the frequency and a set of degrees of freedom of the two 
134interacting bodies. Ni et al.  has used this EMD method to study the 

inter-layer resistance in few-layer graphene. 

First-principles molecular dynamics: The accuracy of classical 

MD simulations depends critically on the empirical potential used in 

the simulation. However, it is a challenging task to accurately fit the 

interaction potential surface for complex structures with empirical 

potential, and in many cases no adequate potential exists in 

literature. Therefore, it is high desirable to combine with MD 

simulations the first-principles (ab initio) methods, for instance the 

density functional theory (DFT), which can provide interatomic 

interaction with high-accuracy. 

Recently, some efforts are devoted to study the thermal 

conductivity from the ab initio EMD simulations. Marcolongo et 
135al.  proposed a technique to calculate the thermal current from ab 

initio simulations. However, their approach requires the solution of a 

set of linear equations at every MD step, which could be 
136computationally expensive. Carbogno et al.  introduced a quantum 

mechanical definition of a local stress tensor for the Cartesian 

components αβ of a given ion as 

in which the first term is the contribution from the interaction with 

their ground-state density n(x), and the second term is the 

electrostatic repulsion between the nuclei with charges Z . In their i

formulism, the heat current can be calculated as

136Carbogno et al.  applied this method to calculate the thermal 

conductivity of bulk silicon and ZrO , and obtained good agreement 2

with the experimental results. However, the convective term of the 

heat current was ignored in their calculations, which can be 

important for liquids. Besides, the stress tensor expression is most 

suitable for an all-electron Hamiltonian, but not for other widely 
137used ab initio calculations. There are also other efforts  to develop 

first-principles Green-Kubo method for calculating thermal 

conductivity of liquids and amorphous solids. 

NEMD simulations

Thermal conductivity In non-metallic solids, the transport of 

phonons, as the dominant heat carriers, is usually diffusive and can 
38be described by the Fourier's law of heat conduction as

 (54)

 (48)
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In this way, the conventional thermal conductivity is simply the 

spectral thermal conductivity in the static limit (          ). Based on 

the Wiener-Khinchin theorem, the spectral heat current power 

density can be expressed as

0

.

As a result, thermal conductivity can be calculated as 

.

κ κ .
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where J  and      are the heat flux and temperature gradient along the 

transport direction in the non-equilibrium steady state. The local 

temperature can be computed from MD simulation as
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where N is the number of atoms in the local bin, and the angular 

bracket denotes the ensemble average. One key step in NEMD 

simulations is to build up the temperature gradient along the 

transport direction. There are two different ways to establish the 
114,115temperature gradient:  (i) impose the local temperature by 

thermostats (heat source/sink); (ii) impose the heat flux by 

simultaneously extracting and adding kinetic energy at heat bath.  

Thermostat, also known as heat bath, is used in MD simulation 

to maintain the constant temperature, i.e., the canonical ensemble. 

There are two representative thermostats widely used in MD 

simulation. One is the Nosé–Hoover thermostat, in which a 

deterministic damping term is introduced into the equation of motion 

as

 (56)

 (57)

where T is the aimed temperature, N is the number of atoms in the 

heat bath, and τ is the response time of the heat bath. The other is the 

Langevin thermostat, in which a random force (ξ) and the dissipation 

rate (λ) are introduced simultaneously as 

 (58)

ξ and λ is related to each other according to the fluctuation-

dissipation theorem, which gives the variance of the random force as 

2mλk T.B

The choice of thermostats may have significant impacts on the 

MD simulations of heat conduction at nanoscale. Previously, Chen et 
128al.  demonstrated that, compared to Nosé–Hoover heat bath, 

Langevin heat bath is more sufficient to generate a linear 

temperature profile with small boundary temperature jump due to its 

stochastic nature. Moreover, Langevin heat bath can produce reliable 

physical results in thermal rectification transport, which are 

consistent with experimental results in a large range of heat bath 

parameter. 
Another way to establish the temperature gradient is to impose a 

heat flux across the system. This can be achieved by rescaling atomic 

velocities in the heat bath, or artificially interchanging the velocity of 

the hottest atom in the cold region with the velocity of the coldest 
138atom in the hot region.  The imposition of heat flux reverses the 

conventional cause (temperature difference) and effect (heat flow) 

picture of heat conduction, and thus is also known as the reverse 

NEMD approach. Compared to the thermostat method with targeted 

temperature, control of heat flux would result in the temperature 

fluctuation. Therefore, before calculating the thermal conductivity, 

the frequency and amount of energy exchange should be carefully 

verified in order to establish the reasonable temperature distribution.
By rescaling atomic velocities in the heat bath region at each 

MD time step, heat energy  is added to the heat source on one ΔE

side, and the same amount of energy is removed from the heat sink 

on the opposite end. Generally speaking, as the atomic velocity is 

 (59)

where S is the cross sectional area, and  is the time interval Δt

performing the velocity rescaling. 

After reaching the non-equilibrium steady state, the temperature 

gradient can be calculated by fitting the linear region of temperature 

distribution, as shown in Fig. 11. In regard to the modeling setup for 

temperature distribution, there are also two kinds of boundary 

conditions: non-periodic and periodic. One can set the heat baths at 

the two ends of system with boundary atoms fixed to avoid atom 

ablation, which is the non-periodic condition. On the other hand, to 

avoid the fixed boundary effect on thermal transport, another setup 

with periodic boundary condition is also widely used to establish the 

temperature gradient, in which a projection of temperature 
115 distribution is obtained in the other half side. In this setup, a factor 

of two will appear on the denominator of Eq. (59.) for heat flux to 

account for the bi-directional heat flow. One has to use this setup in 

certain case where the periodic boundary must be used, for instance 

when treating the long-range electrostatic interaction. However, the 

use of periodic boundary condition comes at additional price that one 

has to double the size of simulation domain compared to the case 

with fixed boundary condition.

As the calculated sample length smaller than the phonon mean 

free path, the phonon-boundary scatterings would occur at the 

interfaces with the heat source/sink. As a result, the thermal 

conductivity will be limited by the simulation size, which is known 

as the Casimir limit. For bulk materials, the sample size is much 

greater than the phonon mean free path so that the size effect will 

vanish. In the finite-size simulations, the effective mean free path

is determined by

 (60)

where L is the length of the simulation domain, and    is the mean 

free path for infinitely large system. Eq. (60.) suggests a linear 

relationship between 1/κ and 1/L, so that the converged thermal 

conductivity for bulk system can be obtained by extrapolating the 

simulation domain size to 1/L=0, as shown in the inset of Figure 11. 
139,140In low-dimensional materials, however, recent studies  found 

thermal transport does not obey the Fourier's law due to the 
141anomalous heat diffusion,  leading to the peculiar size-dependent 

thermal conductivity. For instance, in one-dimensional materials, 
142,143Maruyama  firstly demonstrated by carrying out NEMD 

simulations that the thermal conductivity for small diameter (5,5) 

carbon nanotube does not converge to a finite value when increasing 
αin tube length up to 404 nm, and a power law dependence κ~L  is 

observed. Then, the NEMD method is considered as an effective 

approach to study the length dependent thermal transport behavior in 

low-dimensional systems, which have attracted lots of research 
139,141,144,145interests.

Similar length dependence of thermal conductivity is also 
146,147reported in silicon nanowires  and single extended polymer 

148chains  by using NEMD method. For two-dimensional materials, 
149NEMD simulations  found a logarithmically divergent length 

dependence of thermal conductivity in single-layer graphene. Chen 
150et al.  also reported such length dependent thermal conductivity 

from NEMD simulations. Moreover, they further studies 

demonstrated that such length dependent thermal conductivity can be 
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Here, H is the Hamiltonian of the system, p  is the momentum of the i
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scaled by the same factor in the source/sink region, the net kinetic 

energy is increased/decreased by the same amount. Therefore, the 

heat flux can be calculated as

,



150 151further suppressed by the substrate coupling  or defect scatterings.  

Compared to the amorphous SiO  substrate, the hexagonal boron 2

nitride is found to be a more promising substrate for single-layer 

with high heat dissipation ability for the less suppressed intrinsic 
152high thermal conductivity and length dependence.

There are also some works studied the thermal transport 
153-155properties based on first-principles NEMD simulations.  The 

basic idea follows the theory as discussed above. However, the 

constrained calculation ability of first-principles makes it very 

challenging to study size dependent thermal conductivity for 

complex materials at large scale. 

Interfacial thermal resistance The NEMD simulation has also 

been widely used to study the interfacial thermal resistance between 

different materials, known as the Kapitza resistance. By establishing 

a temperature jump T at the interface, the interfacial thermal Δ

resistance R is calculated as 

 (61)

where J is the heat flux through the interface. This method is widely 

used to investigate the thermal transport across different 
108,156,157 interfaces, including solid/solid, solid/liquid, solid/gas, and so 

on. However, when one side of the interface is metal, electrons can 

contribute to heat transport, and one has to consider other heat 

transport mechanism, such as electron-phonon interaction. In this 

situation, other theory should be involved. 

For instance, by performing NEMD simulations, Alexeev et 
157al.  found that the Kapitza resistance between few-layer graphene 

and water is strongly dependent on the layering of water adjacent to 

the graphene layers, exhibiting an inverse proportionality to the peak 
156density of the first water layer. Recently, Ma et al.  further 

demonstrated from the NEMD simulations that diagonal charge 

decoration on the interfacial graphene sheets can substantially reduce 

the Kapitza resistance between graphene and water by up to 97%, 

compared to the case without charge decoration. Moreover, the 
158interfacial thermal resistance between few-layer graphene  and 

159Si/Ge interface,  and corresponding external effects, such as 
108 160 161strain,  intercalation  and interface roughness,  are also 

extensively investigated by NEMD method. In addition, the 

interfacial thermal resistance can also be used to interpret the 
162interfacial interaction and scatterings  or construct coherent phonon 

163transport channel .

To understand the underlying mechanism of phonon scattering 
164at the interfaces, Chalopin et al.  proposed a microscopic approach 

for estimating the spectral phonon transmission across a solid-solid 
16interface based on EMD simulations. In addition, Sääskilahti et al.  

distinguished the effect of elastic and first-order inelastic phonon 

scattering on the interfacial thermal conductance through NEMD 

simulations, and then extended to calculate the frequency dependent 
165phonon mean free paths.  Moreover, Zhou and Hu further improved 

this method by considering all possible three-phonon scattering 
166channels at the interface.  Actually, the full order of phonon 

scatterings can be included by directly using the interatomic force 

between two atoms at interface as discussed in Ref. 167. 
 168,169 Furthermore, Gordiz and Henry developed a new method, based 

on EMD simulations with full inclusion of anharmonicity, for 

evaluating the modal contributions to interfacial thermal 

conductance. 

4.2 Analysis methods
Density of states

Observation of vibrational modes from density of states, known 

as vibrational density of states (vDOS), is a powerful tool and simple 

method to characterize the phonon activities in materials. Moreover, 
107,172density of states is sensitive to many perturbations,  such as the 

temperature dependent phonon scatterings, strain, doping and 

defects, and so on. The density of states spectra can be simply 

extracted from MD runs, via the Fourier transform of the velocity 

autocorrelation function as 

Fig. 12 Analysis methods for the thermal conductivity modeling in MD simulations. (a) The suppression of precipitation ratio from Si nanowires 

(SiNWs) to Si nanotubes (SiNTs). Reproduced with permission from Ref. 170. Copyright 2010 American Chemical Society.  (b) Lorentz 

function fitting in spectral energy density (SED) analysis for the calculations of phonon relaxation time. Reproduced from Ref. 171, with 

permission from American Physical Society.
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where       is the velocity vector for particle j at time t, ω is the 

vibrational frequency, and N is the number of atoms in the system.  

The calculated vDOS has distribution of peaks, which can 

provide information about the phonon activities from the peak 

frequency and peak height. For example, in the study of the 

interfacial thermal transport behaviors in few-layer graphene, the 

cross-plane strain induced a frequency shifting of the zone-center 

phonons (less than 4 THz), leading to the increasing of interfacial 
108thermal resistance.  On the other hand, the suppressed intensity 

(peak height) of vDOS is often used to explain the reduced thermal 
107conductivity, such as in hydrogenated graphene sheets,  graphene 

162hydride materials,  etc. Moreover, the mismatch of vDOS on the 

two side of an asymmetric nanostructure is often used to interpret the 

thermal rectification phenomena, corresponding to the asymmetric 

phonon activities in two opposite thermal transport directions.,

Participating ratio

The participating ratio is another effective way to provide 

insight on the phonon activities, especially for the phonon 

localization phenomena. Phonon localization is a common 

phenomenon in thermal transport, which can be induced by the 
175atomic defects, interfaces, edges/surfaces and structure deformation.  

It can serve as a criterion to study the phonon localization degree and 

its effects on heat conduction. From the lattice dynamics, the phonon 

participating ratio P of each eigen-mode    can be quantitatively  λλ
176defined as

 (63)

where N is the total number of atoms, and e  is the th eigenvector i αα,λ

component of eigen-mode for the ith atom. P  is a dimensionless λλ 

quantity ranging from 0 to 1, with ~ 1 denoting the propagating 

mode and ~ 0 denoting the fully localized mode. Here, the 

eigenvector e can be obtained from the lattice dynamic calculations 

by solving the dynamic matrix of the studied system. The 

suppression of the P  by structure engineering is usually regarded as λ

the signals for inducing phonon localization, as shown in Fig. 12, 

further leading to the reduction of thermal conductivity.

Besides the frequency perspective, the participating ratio can 

also be converted to provide a spatial distribution of phonon 
128energy,

 (64)

Where n is the phonon occupation number given by the Bose-

Einstein distribution, and                                               is the phonon 

density of states on atom i at frequency ω. One can selectively 

include propagating or localized phonons into the spatial energy 

distribution in Eq. (64.) based on the participating ratio of each 
128phonon mode . 

The participating ratio and spatial energy distribution are widely 

used to reveal the phonon confinement and thermal rectification in 
173,177,178 173asymmetric nanostructures.  For example, Zhang et al.  has 

used this method to witness the phonon localization in the surface of 

silicon nanocone and understand its unique thermal rectification 

transition with asymmetric degree.

The spectral participation ratio P(ω) can also be calculated 

directly from the MD simulations at arbitrary temperature, without 

lattice dynamic calculation.  Without the polarization information, 
179the participating ratio P(ω) is defined as

 (65)

180The previous study  found that the eigenvectors in Eq. (66.) is a 

necessary part in the normal mode analysis to accurately predict the 

phonon relaxation time and mean free path. Without the 

eigenvectors, only the phonon dispersion curves can be accurately 
180,181 182predicted.  On the other hand, Feng et al.  provided both 

analytical and numerical proof that the eigenvectors are not 

absolutely necessary in SED calculations, and two different 

definitions of SED give the same result within the numerical 

accuracy. However, if the frequencies of phonon modes are too close 

to each other, the eigenvectors are necessary in order to separate 
182 them into individual parts.

In addition, the phonon relaxation time ( ) can be obtained by τ
171,180fitting the SED curve by Lorentzian function:

 (68)

where I is the peak intensity, is the frequency of peak center, and  ω γ0 

is the half-width at half-maximum, as shown in Fig. 12. Finally, the τ 

at each wavevector k and frequency is defined as:ω 

 (69)

With the information of spectral from SED, the frequency τ 

contribution to  can be evaluated from the kinetic theory,κ

 (70)

where C ( ) is the phonon volumetric specific heat at frequency ,V ω ω  

υ(k , ω) is the phonon group velocity at wavevector k and frequency 

ω. As shown in Eq. (66.), only the positions and momenta of the 

atoms from MD simulations are evolved in SED analysis. Therefore, 
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in which the vDOS ( ) is the local density of states of th atom ω ii

calculated from the Fourier transform of the velocity autocorrelation 

function based on Eq. (62.). Different from the Eq. (63.), the 

calculated participating ratio P( ) by Eq. (65.) can include the all-ω

order of anharmonic scatterings implicitly from MD simulations.

Normal mode analysis 

The anharmonic lattice dynamics calculations are currently 

limited to three-phonon scattering or four-phonon scattering events 

due to the computational complexity. Thus, its application is limited 

to low temperature at which the high order anharmonic interaction is 

relatively weak. In contrast, the phonon spectral energy density 

(SED) can be calculated directly from MD simulation, in which the 

full anharmonicity of the interatomic interactions and other phonon 

scatterings are simultaneously involved.  110,152 ,180 , 181

The SED is usually refereed as            , where k is the wavevector 

and ω is the frequency. For a given phonon mode with wavevector    

k and branch index λ, the normal mode coordinate      can be 

obtained by following equation,

 (66)

Φ

where m  is the mass of the bth atom in the unit cell,            and        b

is, respectively, the position and velocity of the bth atom in the lth 

unit cell at time t, and               is complex conjugate of the eigenvector. 

The SED              can be calculated by the following formula, 

bl tx

,b
*e k  λ
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it is also an effective way to provide insight to the external effects on 

phonon scatterings, phonon frequency and thermal transport 

properties. 
183For example, using SED analysis, Qiu et al.  found that the 

presence of silicon dioxide substrate induced substantial reduction of 

phonon relaxation time compared to that in suspended single-layer 
152graphene. Zhang et al.  demonstrated that bulk hexagonal boron 

nitride is a more appealing substrate to achieve high performance 

heat dissipation in supported graphene, corresponding to a less 

affected phonon relaxation time and dominant phonon mean free 

path as applying SED analysis. Moreover, the SED method is also 

used to interpret the suppression of thermal conductivity in defected 
110,113 113and doped graphene.  Hu et al.  found that  phonon modes with 

long mean free path are strongly suppressed, resulting in the 

suppressed size dependence and the weaker temperature dependence 

of the thermal conductivity compared to the pristine graphene.

Mode decomposition

As spectral phonon properties can be obtained from the normal 

mode analysis and SED analysis in EMD simulations, relevant 

methods are developed to extract frequency/mode-dependent thermal 
18,186transport information in the framework of NEMD. Zhou et al.  

proposed the time domain and frequency domain direct 

decomposition method (TDDDM and FDDDM) by calculating the 

spectral/modal heat current in NEMD simulations. The FDDDM 

method is based on the correlation function of atomic force and 

velocity as

Fig. 13  Other methods for the modeling of thermal transport in micro-nanoscale systems. (a) Snapshots displacement of Wave-packet modeling 

of single frequency phonon transport through the interface. Reproduced from Ref. 184, with the permission of AIP Publishing. (b) 

Representative temperature profiles in two-temperature model MD for a metal-nonmetal interface. T , T , and T  are temperature profiles for n p e

phonons in the nonmetal side, phonons in the metal side, and electrons in the metal side. T  is a linear fit of the temperature profile of the fit

electron-phonon equilibrium region. ∆T  and ∆T  denote the temperature discontinuity related to the electron-phonon coupling in the metal side ep pp

and the phonon-phonon coupling across the interface, respectively. Reproduced from Ref. 185, with permission from American Physical Society. 

 (71)

and the spectrum of atomistic heat current is related to the Fourier 

transform of Eq. (66.),

 (72)

187-189In the light of the heat current expression in MD,  the spectral 

heat current in a control volume can be obtained as

The individual phonon contributions to overall thermal  conductivity 

are defined as                                                   As for the TDDDM method, the heat 

current of each mode can be defined as

 Furthermore, the phonon mode contributions to the overall thermal

         
 conductivity are derived from the formula,                   The TDDDM 

method can resolve the thermal conductivity into mode contributions 

while the FDDDM method is only available for spectral analysis. 

Both methods can be used to investigate the size effect of thermal 

conductivity from the aspect of phonon contributions, which cannot 

be solved by SED or normal mode analysis within the EMD 

framework.

 Interfacial thermal transport plays an essential role in nanoscale 

structures and composite materials. The phonon scattering at the 
32interface results in the Kaptiza resistance,  which can be simply 

190,191described by the acoustic mismatch model  (AMM) and the 
33diffusive mismatch model  (DMM). In addition, the Green's 

30,192function method  provides a more precise depiction of heat 

conduction at the interface. However, these methods are unable to 

directly account for the inelastic effects due to the interatomic 

anharmonic forces. To assess the importance of inelastic scattering at 
16planar interfaces, Sääskilahti et al.  developed a method to separate 

the elastic and inelastic contributions to interfacial thermal 
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conductance. With the expansion of interatomic forces, the 

correlation function of the interface can be written as

 

 (75)

where only the first two terms are given. Based on the Fourier's 

transform of Eq. (75.), the spectral decomposition of the 

conductance is resolved into elastic and inelastic contributions as

 (76)

 (77)

 (78)

The accuracy of                is determined by the higher-order 

terms of Eq. (75.) as the truncation of the interfacial force expansion 

is unavoidable. Since this method can provide the spectral thermal 

conductance at the interface, we can obtain the dominant phonon 

frequencies of the heat conduction as well as the temperature-

dependent elastic and inelastic contributions. It was found that 

inelastic effects strongly facilitate energy transfer across the 

interface at high temperatures, and the harmonic methods like 

Green's function are ineffective to explain such effects where 

anharmonic interactions govern the interfacial thermal transport. 

The above decomposition methods from Refs.16-18 and  mainly 

focus on the calculation of spectral/modal heat current, and 

determine the spectral/modal thermal conductivity through the 

Fourier's law assuming the same temperature gradient for all phonon 

modes. However, the local thermal equilibrium assumption usually 
2 19breaks down at nano/micro-scale.  Feng et al.  developed the 

spectral phonon temperature (SPT) method to calculated the 

temperatures of phonon modes in both real and phase spaces based 

on NEMD simulations, and directly observed the local thermal non-

equilibrium between phonon modes. The phonon mode temperature 

is defined as the carrier energy density,

 (79)

The SPT method is able to illustrate the mode temperature 

distribution of ballistic and diffusive phonons, so it is very useful to 

investigate local thermal non-equilibrium phenomena in 

nanomaterials and across interfaces. Moreover, the thermal 

conductivity can be decomposed into mode contributions on the 

basis of TDDDM method and SPT method within the framework of 

NEMD,

 (80)

It should be noted that Eq. (75.) indicates a new way of thermal 

conductivity calculation for nanomaterials due to the local thermal 

non-equilibrium among phonon modes, which may provide more 

insights into nanoscale heat transfer issues. 

There are also other decomposition methods for specific 
193research problems. For example, Fan et al.  developed a method to 

decompose in-plane and out-of-plane phonon contributions to the 

total thermal conductivity, and found that the acoustic flexural 

component is responsible for the high thermal conductivity of 

194graphene. Shi et al.  decomposed the thermal boundary resistance 

across CNT-graphene conjunctions in order to isolate the 

contributions of different mechanisms.  

Wave packet method

The MD-based wave-packet method is a powerful tool to study 

the scatterings of individual phonon and its propagation behaviors, 

especially at the interface or surface of nanostructure. This method 
184 was first introduced by Schelling et al. to study the phonon 

scattering at semiconductor interfaces and was subsequently applied 

to study a wide range of problems, as shown in Fig. 13a. The wave 

packet is created via linear combinations of the vibration normal 

modes at given polarization  and wave vector k as followingλ

The excited wave packet usually has very small amplitude A, 

such as 0.01 Å, to justify the use of the harmonic approximation. By 

Fourier transform of the wave-packet, we can get a single peak in k-

space centered at k , with the full-width at half-maximum (FWHM) 

of 2π/η. The transport behaviors of wave-packet can be visualized by 

recorded the time-dependent of wave packet propagating (See Fig. 

13). Moreover, by computing the total energy of incident and 

transmitted wave-packet, one can obtain the energy-transmission 

coefficient, which is helpful for analyzing the thermal transport 
184,195ability through the interface and surface.  It should be noted that 

the wave-packet method is usually performed at low temperature, at 

which the anharmonic phonon-phonon scatterings can be ignored. At 

high temperature, it is difficult to distinguish the wave packet signal 

from the temperature noise, and the wave packet is easily scattered 

by the atom vibration at high temperature.
195By performing wave packet simulations, Chen et al.  elucidate 

that in the covalently bonded graphene–carbon nanotube hybrid 

structure, the transmission coefficient across graphene sheets for 

various phonon modes can be significantly promoted by the covalent 

bonding compared to that with non-bonded weak inter-layer 

interaction, leading to the remarkably improved c-axis thermal 

transport in the hybrid structure for high-performance thermal 
196dissipation. From wave packet simulations, Shao et al.  

demonstrated that phonon-boundary scatterings strongly dependent 

on the boundary conditions.

4.3 Other MD based methods
Two-temperature model MD: All the above MD methods for the 

calculation of thermal conductivity have only accounted for phonons 

as the dominant heat carrier, while ignoring the contribution of 

electrons. When the contributions from electron or electron-phonon 

interaction to heat conduction become important, such as in metals 

or semimetals, other more reasonable method should be proposed.

The two-temperature model (TTM) is the approach that can 
185,197properly include electron-phonon coupling,  in which the electron 

and phonon are treated as two separated subsystems and a 
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η 
α

 λu

αu

α  λ

where      is the αth displacement component of ith atom in the  unit  lth

cell, A is the amplitude of the wave-packet, and       is the αth 

eigenvector component of eigen-mode λ for the ith atom at the 

specific wavevector k, and is centered around x  in the coordinate 0

space. The parameter η is used to define the spatial width of the 

wave packet. To initialize velocities, we added time dependence to 

Eq. (81.) and differentiated it as 

 (82)
 λα α

uν

.



temperature is assigned to each subsystem, as shown in Fig. 13. 

Compared to the classical MD simulations, more energy transport 

channels such as electronic and electron-phonon coupling channel 

are added, leading to better approximation to realistic energy 
185 transport events in electron dominant materials. Wang et al.

successfully applied this TTM-MD method to capture the non-

equilibrium between electron and phonon in thermal transport across 

metal-nonmetal interfaces. The simulation results are physically 

sound and are in better agreement with experimental data compared 

to those obtained using conventional MD simulations. 

Approach to equilibrium MD: The approach to equilibrium 

MD, AEMD, is another kind of thermal conduction modeling 
198,199  method. The studied system is initially set out-of-equilibrium by 

partly heated system portion at a different temperature from the rest. 

Then, when the system approaches to equilibrium, the time evolution 

of the physical properties, such as temperature difference and total 
198energy between the two parts, are monitored. Lampin et al.  

demonstrated that for most practical cases of interest, the 

temperature decay is exponential and can be used to extract the 

thermal conductivity of homogeneous materials. Compared to the 

expensive computation of autocorrelation function in EMD and 

establishing a non-equilibrium steady state in NEMD, the 

equilibrium in AEMD can be reached in a few tenths to hundreds of 

ps with much reduced computational cost.

5. Non-equilibrium Green's function
Despite the popularity of BTE-based methods and MD simulations 

to model phonon transport, these methods that have been discussed 

in the previous sections suffer from some shortcomings when 

applied to phonon quasi-ballistic transport, which usually happens at 

low temperature or in the devices with small size. In the BTE 

calculations, lattice vibration is treated as incoherent particles, i.e. 

phonons, which is a good approximation when the phonon 

wavelength is much smaller than the characteristic size of the 
200nanostructures.  However, when the characteristic size is 

comparable to or larger than the phonon wavelength, the lattice 

vibrations would exhibit wave features, such as interference, 

diffraction and localization, which cannot be captured by the picture 

of incoherent particle. As an alternative, lattice dynamics approach 
201-203models phonons as coherent waves.  But, it is difficult to apply 

this approach to the systems with complicated atomic structures, 

such as amorphous layers and the crystal with defects or multiple 

interfaces, since lattice dynamics is more suitable for periodic lattice 

systems. Instead of treating lattice vibrations as particles or waves, 

MD simulations do not need to assume the nature of phonon 

transport. However, the systems in MD simulations are classical so 
41that phonon transport properties at low temperatures is not accurate.  

192,204-206Non-equilibrium Green's function (NEGF) approach,  also 

called atomistic Green's function approach in some literatures, is 

another powerful tool to study phonon transport in nanostructures. 

Compared with BTE, MD and lattice dynamics, NEGF, which is 

based on a dynamical equation and the quantum mechanical 

distribution for phonons, models lattice vibrations as waves and 

includes atomic details into account. When the anharmonic 

interaction is not considered, i.e., phonon-phonon scatterings are 

absent, the phonon transmission and thermal conductance obtained 

from the NEGF calculations are exact. Therefore, the NEGF is an 

ideal approach to investigate the phonon transport in nanostructures 

where elastic scatterings are dominant. The NEGF approach has 

been successfully employed to study phonon transport across low-

207 208-210 211,212dimensional systems,  interfaces  and superlattice structures  

and so on.

In Sec. 5.1, the general framework of the standard NEGF, the 

numerical procedures and the methods to generate the inputs for 

NEGF will be introduced. A few applications of the NEGF method 

will be presented in Sec. 5.2. In Sec. 5.3, the extension of the NEGF 

method to calculate the mode-specific phonon transmission will be 

briefly mentioned.

5.1 Non-equilibrium Green's function approach for 

phonon transmission
General Framework

The typical system in the NEGF approach is illustrated in Fig. 14 

(a). The simulation system consists of three regions, one device 

(scattering) region and two contacts (thermal reservoirs). The 

temperatures of the two contacts are kept at  and , T�+�DT / 2 T�-�DT / 2

respectively, with an infinitely small temperature difference . The DT

task of the NEGF is to obtain the frequency-dependent phonon 

transmission, or the number of phonons passing the device region 

from one contact to the other one, under the driving of the 

temperature difference. Using the information of the phonon 

transmission, the heat flux across the device region could be 
213-215calculated through the well-known Landauer formalism.

    

Fig. 14 (a) Schematic diagram of the simulation system in a typical 

NEGF calculation. (b) Illustration of the sublayers in the left 

contact.

The NEGF approach is originated from the dynamical equation 

for lattice vibrations. Under the harmonic approximation the phonon 

waves in a closed system can be described by the dynamical 

equation
 ( )2 (  )w w- =I   H Φ 0 ,                            (83)

where  is the angular frequency of lattice vibration, I is the identity ω

matrix, H is the harmonic matrix. The bold letters present matrices 

and vectors. The elements H  of the harmonic matrix H is defined as ij

                              (84)

 2

0

1
ij

i ji j

U
H

u   uM  M

¶
=

¶ ¶

where u  and u  denote the i-th and j-th atomic displacement degrees i j

of freedom in the system; M  and M  are the atomic masses of the i j

atoms that the i-th and j-th degrees of freedom belong to; U is the 

interatomic potential energy of the system; |  means that the 0

derivative is calculated when atoms stay in their equilibrium 

positions, i.e., u  = u  = 0. Φ(ω) is the eigenvector of H, and could be i j

interpreted the magnitude of the vibrational modes, in which the m-
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th element, , is the product of u  and .mF         m

Instead of solving Eq. (83.) directly for the phonon waves as in 

linear lattice dynamics simulations, the Green's function method can 

be used to obtain the dynamical response of the lattice system under 

small perturbations, such as small displacements or small forces 

acting on the atoms. The Green's function corresponding to Eq. (83.) 

is defined through

 ( )2w - =I   H  G   I ,                              (85)

where G is the Green's function. The element G  in the Green's j,i

function G represents the response of the degree of freedom j to the 

perturbation on the vibration of the i-th degree of freedom. 

When a system is kept at a constant temperature through an 

external heat source or sink, the system becomes an open system and 
216Eq. (83.) has to modified to the form

 ( )2 (   )iw d wé ù+ - =ë ûI    H Φ s ,                              (86)

A small imaginary number  with            is included in the   

dynamical equation to represent the damping in the open system. s is 

a source term that is interpreted as the inflow of phonons into the 

system. Similar to Eq. (85.), the Green's function  of the open system 

is defined as

 id  0d ®

 ( )
1

2 iw d
-

é ù= + -ë ûg I H

With the above concepts of Green's function, the phonon 

transmission through a device or a scattering region, which could be 

a nanostructure, an interface, etc., could be calculated. Based on the 

three-region divisions of the simulation system, as illustrated in Fig. 

14a, the harmonic matrix of the entire system could be written as

 
L,L L,D

D,L D,D D,R

R,D R,R

é ù
ê ú

= ê ú
ê ú
ë û

H H 0

H H H H

0 H H

 ,                              (87)

where the subscripts L, R and D represent the left contact, the right 

contact and the device region; the submatrices  , ,  are the H H HL,L R,R D,D

harmonic matrices of the two contacts  and the device part; , HL,D

H H HR,D D,L D,R,  and  represent the connection matrices whose elements 

involve the harmonic constants corresponding to one atom in the 

device region and the other one in the contacts. The zero matrices 

indicate that any atoms in one contact do not interact with the atoms 

in the other contact. When the two contacts are connected to the 

external heat source or heat sink, the dynamical equation of the 
30entire system can be expressed as

( )

( )

2 0
L,L L,D L L L

2
D,L D,D D,R D

02
R R RR,D R,R

i
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w d

w

w d
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I H H 0 Φ χ s

H I H H Φ 0

Φ χ s0 H I H

, (88)

where   and  are the eigenvectors of the harmonic matrices of 0 0Φ Φ

the isolated contacts;  are that of the device that are coupled with ΦD

two contacts;  and  represent the change of atomic displacements χ χL R

of the two contacts due to the coupling with the device region;  and sL

sR are the source terms for the two contacts due to energy transfer 

with the external surrounding. From the first row of Eq. (88.), we 

have

L R

( ) ( )2 0 2
L,L L L,L L L,D D Li iw d w dé ù é ù+ - + + - - =ë û ë ûI   H Φ I    H χ H Φ s . (89)

Since the left contact has energy transfer with the external 

thermostat, according to Eq. (86.) the first term of Eq. (89.) equals . sL

Thus, Eq. (89.) becomes . Similarly, the third row of Eq. χ =g H ΦL L L,D D

(88.) leads to .  and  are the Green's functions of the χ =g H Φ  g gR R R,D D L R

two contacts, which are also called retarded surface Green's 

functions and have the form
 

( )
1

2
L L,Liw d

-
é ù= + -ë ûg I H

 ( )
1

2
R R ,Riw d

-
é ù= + -ë ûg I H

 ,                              (90)

 .                             (91)

Based on the obtained expressions for  and , the eigenvectors for χ χL R

the coupled contacts are

0 0

L L L L L L,D D
= + = +Φ Φ χ Φ g  H Φ

0 0

R R R R R R ,D D= + = +Φ Φ χ Φ g  H Φ

 ,                              (92)

 ,                              (94)

Furthermore, substituting  and  into the second row of Eq. (88.), χ χL R

the atomic displacement vector for the device region is then written 

as

( )0 0
D,D D,L L D,R R=D × +Φ G       H Φ H Φ

 .                              (93)

where                                             is the Green's function for the 

device region with the self-energy matrices                                  and

 -1
2

D,D D,D L Rwé ù= - - S - Së ûG I H

L D,L L L,DS = H     g   H

R D,R R R,DS = H     g   H

From Eq. (92.) to Eq. (94.), the wave functions of both the 

device region and the contacts have been obtained, which are linked 

with the Green's functions of the three regions. Using the 

information of the obtained wave functions, the phonon propagation 

could be determined as the following. 

The total energy of the system can be decomposed into the 
30atomic energies,

 
p

p

E E=å  ,                              (95)

with

* *1

2 4

p

p p p q qp p

q

M
E u u u k u= × + å&����&                              (96)

where   is the energy  associated  with the p-th degree of freedom ,  Ep

and                           . The first term of Eq. (96.) is the kinetic energy, 

while the second term is the potential energy.  Using Newton's second

 

law, , the time derivative of   is rewritten as                             Ep

 
qp pq p qk H M M=

 
p p pq q

q

M u k u=-å&&

 

( )* * * *1

4

p

p pq q q qp p q qp p p pq q

q

dE
u  k   u     u  k  u      u k   u     u  k   u

dt
= + - -å & & & &  .          (97)

For a given phonon, the atomic displacement for the p-th degree of 

freedom is connected  with  the wave function of the phonon and 

expressed as . Substituting the expression of                                         
  
atomic displacement into Eq. (97.), the time derivative of  is now  Ep

associated with the eigenvectors of the vibrations, and Eq. (97.) can 

be further simplified as

 ( )exp /
p p p

u i t Mw=F -
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By decomposing  into the contributions from different degrees dE /dtp

of freedom, the local heat current between the degree of freedom p 

and q can be defined as

 
( )* *

2
pq p pq q q qp pJ H H

i

w
= F F -F F  .                                (99)

Summing up the local heat current and normalizing the energy of the 

phonons at frequency  to  , the heat current due to a phonon ω ωh

from the device region to the right contact can be derived as

 
( ) ( )* *

R R.D D D D,R RTr
2

J w = -Φ H Φ Φ H Φ
h

 .                            (100)

Substituting Eq. (92.) and Eq. (93.) in Eq. (100.), the heat current for 

one particular phonon frequency is related to the Green's functions 

through

( ) ( )L     D,D    R       D,D

1
Tr

2  2
J w

p
+

= Γ G Γ G
h  .                           (101)

where �����������������������,�����������������������    and “+” denotes the conjugate 

transpose of the matrix. Using the Landauer formalism, the thermal 

conductance through the device region from the left contact to the 

right contact is derived as

( )
L L L

i += S -SΓ ( )
R R R

i += S -SΓ

 
( )L     D,D    R       D,D

1 ( , )
Tr

2

J df T
d

A A dT

w
s w w

p

+= = ò Γ G Γ Gh  .                 (102)

The total phonon transmission across the device region is defined 
217as

( )
L    D,D   R      D,D(  )=Trw +X Γ G Γ G  .                            (103)

 (  )x��w

(  )=   (  )  (   )Mw w x wX  .                              (104)

where     is the total number of phonon modes at frequency ω     

from the left contact. A simulation system made up of a pure 

material can be employed to calculate         .    In such calculations,    

       equals 1 so that  is simply identical to the phonon      

transmission in the pure material according to Eq. (104.).

Self-energies

As indicated in Eq. (94.), the crucial step to calculate the 

phonon transmission is to compute the self-energies  and  of the S SL R

two contacts. The challenge of calculating the self-energies is that 

the contacts are semi-infinite, thus the dimensions of the matrices 

H HL,L R,R and  are large, leading to the difficulty in computing the 

surface Green's functions  and . g gL R

Here, we take the left contact as an example to show the 

procedures to obtain the surface Green's functions. The surface 

Green's function for the right contact can be derived in the same 

way. Since in the Green's function calculations only are  H g HD,L L L,D

 (  )Mw

 (  )Mw
 (  )Mw

In addition to the total phonon transmission to count the number of 

phonons traveling through the device region, the phonon 

transmittance,    , is also used in some literatures to present the   
208phonon transport process, which is linked with  throughX

 (  )x��w

required, where  and  have only a small portion of non-zero H HL,D D,L

elements, which represent the interaction between the device region 

and the contact, it is not necessarily to solve the entire  matrix, but gL

a submatrix in . Considering that the interatomic interaction is gL

short-ranged, the left contact can be divided into a few sublayers, as 

illustrated in Fig. 14b. Due to the semi-infinite nature of the contact, 

these sublayers are assumed to identical to each other. Since the  

atoms in a layer only interact with those in the neighboring 

layers, the matrix             can be expressed as                             ( )2
L L,Liw dé ùº + -

ë û
M I H
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L L L L L L

1,0 1,0 0,0 ,0 0,1 1,0l l l- +- + - =M g M g M g 0  1,2,...l = ,                         (107)

 

 
( ) ( )

L( ) L( ) L( )

1,0 0,0 0,11 2 ,0 2 ,0 +1 2 ,0n n n

n n n

l l-
- - =M g M g M g 0

Many methods have been developed to obtain        from Eq. (106.) to 

Eq.(107.). The details of these methods could be found in Ref. 218. 

One commonly used approach is called decimation method. The 

basic idea is to eliminate   (m is a nonnegative integer) by   

expressing it using       and  through Eq. (107). Inserting the       

expression of            into Eq. (106.) and Eq. (107.), the set of equations 

become in terms of                              . Since the new equations have 

the same form as Eq. (106.) and  Eq. (107.), we can perform the above 

procedures to eliminate  and obtain the equations                                

with respect to .Repeating such elimination process                                 

n times, we reach the following relation 
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 ,                         (109)

where                                      are the coefficient matrices generated 

in the elimination process, which can be generated in an iterative 

way starting from                                . It can be easily proved that as 

n becomes sufficiently large,                                                 . Physically, 

this is because the perturbation on the sublayer far away the device 

region should have negligible effects on 0-th sublayer.

L(   )

0,0

nM , L(   )

1,0
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nM
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0,0
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1,0
M  and L

0,1
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0,1
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n -

=g M

Interatomic force constants

According to the discussions above, the only required inputs for 

NEGF method are the harmonic force constants of the system 

studied. Often the empirical interatomic potentials are employed in 
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where  is the dynamical matrix for the  i-th sublayer in the left     

contact; and                     represents the coupling between the i-th 

and (i+1)-th sublayers. Taking the advantage of the translational 

symmetry of the sublayers, we have                       

and                                                         

(i ). The corresponding Green's function  can be similarly =1,2,... gL

decomposed to a series of submatrices, denoted as . According to     

the definition of , the submatrices have to obey the following gL

relations

 L

,i  jM

 L L

, 0,0 i =M M

 ( ) ( )L L L L
, 1 1, 0,1 1,0i i i i

+ +

+ += = =M M M M

 L
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NEGF calculations to describe interatomic interactions. However, 

the accuracy of the existing empirical potentials is usually not 

satisfactory to fully reproduce the vibrational properties of the 

materials. Therefore, quite a few attempts have been devoted to 

integrate first-principles calculations with NEGF calculations.

Comparing to extracting first-principles interatomic force 

constants for calculating thermal conductivity of bulk crystals, which 

has been discussed in Sec 3.2, the process becomes computationally 

challenging when applied to the systems that are often explored by 

the NEGF method. This is because the periodicity is usually lost in 

these systems, where the interfaces or defects usually exists, and 

large supercells would be required for the first-principles 

calculations to capture the essential characteristics in the system 

investigated. A few solutions have been proposal to boost the 

efficiency of extracting harmonic force constants from first-

principles.

To relieve the computational burden of modeling the crystalline 

systems made up of two different atomic species with similar 

chemical properties, the mass approximation that was employed to 

calculate the thermal conductivity of alloys has thus been used to 
219,220 extract interatomic force constants from the first principles.  

Under the mass approximation, the differences in the lattice 

constants and the force fields between the two dissimilar materials 

are ignored and only the difference in atomic mass is taken into 

account. Therefore, the harmonic constants can be extracted in a 

smaller supercell using the small-displacement method or the 

primitive unit cell through the perturbation approach by just 

following the procedures discussed in Sec. 3.2 for bulk crystal. 

Despite the simplicity of the mass approximation, the local force-

field difference is neglected, which might affect phonon transport 
221 .222considerably, 

To overcome the limitations of the mass approximation, Gu et 
210al.  employed the higher-order force constant method to extract the 

harmonic force constants. They first approximated the atomic system 

of large dimension that contains two species as a virtual crystal. In 

the virtual crystal, the two types of atoms in the first-principles 

simulation are replaced by virtual atoms, whose pseudopotential is 

the percentage-weighted pseudopotentials of the two types of 
210,223elements through

 ( ) ( )elem1 elem21 / 2 1 / 2V V Vs s s= + + -é ù é ùë û ë û  ,                     (110)

where  and  are the pseudopotentials for element 1 and V Velem1 elem2

element 2 and σ represents the likeliness of the virtual atom to be 

element 1 or 2. σ  and -1 represents elements 1 and 2, � = 1

respectively. Comparing the realistic atomic system with the virtual 

crystal, the difference of their total energies originates from two 

aspects: (1) the atoms are not uniformly distributed as in a virtual 

crystal but are of small displacements u from their virtual crystal 

counterparts. (2) The type of the atom σ and the corresponding force 

field in the real system differs from the virtual atom. Both of them 

make the harmonic force constants of the real system deviate from 
223the virtual crystal. The higher-order force constant model  

approximates the difference between the total energy of the real 

lattice system and that under the virtual crystal approximation using 

the Taylor's expansion of the total energy of the reference virtual 

crystal with respect to { } and {σ }. These coefficients in the uR R

Taylor's expansion reflect the vibrational and chemical properties of 

the virtual crystal, which can be obtained from first-principles 

following the steps presented in Ref. 210. Once these coefficients are 

available, the Taylor's expansion is indeed the expression of the 

energy of the system and could be used in MD simulations to relax 

the structure. Furthermore, the harmonic force constants could be 

easily calculated with these coefficients by taking the second-order 

derivatives of the energy with respect to atom displacements.

For more complicated systems, such as those involving two 

dissimilar materials with totally different crystal structure, neither 

the mass approximation nor higher-order force constant method 

could be used. Instead of including the whole system in first-

principles calculations, in some previous studies the system is 

divided into a few subsystems, and the harmonic force constants of 

each subsystem are extracted independently from the first-
224principles.  As the computational burden increases rapidly with the 

size of the simulations, such an approach can boost the efficiency of 

extracting harmonic force constants reasonably.

5.2 Applications
Phonon transport across one-dimensional systems

Low-dimensional materials, such as nanotubes, nanowires and two-

dimensional materials, have attracted tremendous attention due to 

their unique physical properties for fundamental science and various 

technological applications. The thermal properties of low-

dimensional materials are crucial for many applications, such as 
225 5,226thermoelectrics  and thermal management.  Since phonon 

transport properties in low-dimensional materials are different from 
227,228those in three-dimensional bulk materials,  the heat conduction in 

low-dimensional systems were intensive explored in the past two 

decades. Due to the simplicity of the formulism, the NEGF was 

commonly used as a theoretical tool to study phonon transport in 

low-dimensional systems. The ballistic limits of thermal 

conductance of low-dimensional materials and the effects of many 

physical factors like size, defects, strain on the phonon transmission 

and thermal conductance are usually explored.

Carbon nanotubes are typical one-dimensional nanostructures. 

They are believed to possess high thermal conductivity due to their 

unique phonon band structure and low phonon scatterings. However, 

the synthesized structures inevitably include some defects, such as 

vacancies, substitutional defects and chemical defects, which would 

reduce the thermal conductivity.   
207Mingo et al.  implemented a first-principles method to 

investigate the transmission of phonons through Stone-Wales defects 

and nitrogen substitutional impurities. They proposed to use a 

Lagrange-multiplier technique to impose the translational and 

rotational invariance of the harmonic force constants. Fig. 15a 

compared the phonon transmission through a single Stone-Wales 

defect using the force constants that obey the invariances and that 

using the untreated force constants. The different transmissions 

calculated from different sets of force constants for low-frequency 

phonons emphasize the importance of imposing the invariances. The 

phonon transmission calculated by the force constants from the 

Brenner potential was presented in Fig. 15b, and quantitative 

differences between the results from first-principles and those from 

the Brenner potential in the positions of peaks, and the span of the 

spectrum can be clearly observed. In addition, it was found from 

Fig. 15c that the effect of the nitrogen impurity is rather minor as 

compared with that produced by structural defects of the Stone-

Wales type. When the multiple defects or impurities exist in the 

nanotubes, the phonon transmission could be quite distinct from the 
229nanotube with single defects. Savic et al.  identified that multiple 

scattering induced interference effects are prominent for isotope 
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concentrations smaller than 10%; otherwise, the thermal conduction 

is mainly determined by independent scattering contributions of 

single isotopes.

Fig. 15 Gray shading shows phonon transmission for (a) Stone-

Wales defect from first principles, (b) Stone-Wales defect from 

Brenner potential, and (c) nitrogen substitutional impurity from first 

principles, on a (7,0) SWCNT. Black shading shows phonon 

transmission for the pristine nanotube. Dashed red lines show the 

unphysical results obtained using unsymmetrized force constants. 

Reproduced from Ref. 207 with permission from American Physical 

Society.

Nanoribbons, stripes of two-dimensional materials, which are 

also quasi-one-dimensional systems, have distinct electronic 
230,231properties from the infinitely large sheet.  The thermal 

conductance of a few different types of nanoribbons have been 
125,232-236studied.  The effects of the orientation, width and edge 

roughness on the phonon transmission in nanoribbons were 

investigated using the NEGF approach. For instance, the phonon 

transmission function across graphene nanoribbon was calculated by 
125,232-234a few groups,  in which the obtained phonon transmissions are 

quite different for nanoribbons with zigzag edge and armchair edge. 

With the obtained phonon transmission, the calculated thermal 

conductance of zigzag nanoribbon is found to be higher than the 
233armchair one with comparable widths. Tan et al.  attributed the 

chirality-dependent thermal conduction to the fact that low 

frequency bands in graphene nanoribbons with zigzag edges are 

more dispersive than those in those with armchair edges. MD 

simulations also confirmed the zigzag nanoribbon is more capable of 
237conducting heat.  Another finding from the NEGF study is the 

normalized thermal conductance (the ratio between thermal 

conductance and the cross-sectional area of a nanoribbon) exhibits a 

negative dependence on the width of nanoribbon.233,234

Phonon transmission across interfaces and thermal boundary 

conductance

Interfaces play a critical role in determining phonon dynamics 

and thermal conduction in nanostructures. The detailed information 

of how a phonon quanta with specific energy and momentum is 

scattered by an interface is essential for designing nanostructures 

with desirable thermal performance using mesoscopic modeling 

tools, such as the phonon Boltzmann transport equation (BTE) based 

method  and MC simulations.  The NEGF method could provide 238 239

the frequency-dependent phonon transport across interfaces.

Unlike the one-dimensional system discussed above, the 

interfacial system is usually three-dimensional. Assuming the 

interface is parallel to the x-y plane, the system is infinitely large in 

the  and  directions, resulting in infinitely large number of degrees x y

of freedom in the harmonic equation as well as the Green's function. 

Zhang .  proposed to use the wave vector representation to 209et al

construct these matrices. In this approach, the infinitely large system 

is divided to identical tubular unit cells along the  direction. Due to z

the periodicity in the  and  directions, the harmonic matrix can be x y

expressed in a plane-wave form in terms of wavevector   . By 

averaging the Green's function with respect to wave vector, the mean 

Green's function can be easily obtained, which is used to determine 

 k P

Fig. 16  (a) Interface formed between Si and Ge-like materials with 

an 8% lattice mismatch after relaxation with MD simulation. (b) 

Frequency-dependent phonon transmittance across the relaxed 

interfaces formed between Si and Ge-like material with different 

percentages of lattice mismatch. Reproduced from Ref. 208 with 

permission from American Physical Society.
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phonon transmission and thermal conductance as discussed in Sec. 

5.1. 

Zhang .  investigated the phonon transmission across 209et al

Si/Ge/Si and Ge/Si/Ge interfaces, where the lattice of Si is stretched 

to match that of Ge. The thermal conductance agrees well with the 

prediction from the acoustic mismatch model at low temperatures. 

To consider phonon transmission across realistic interfaces, Li and 

Yang  developed an integrated molecular dynamics (MD) and AGF 208

approach. In their work, the lattices of silicon and germanium 

crystals that form the interface are not assumed to share the same 

lattice constant, but have their own lattice constants. They used 

Tersoff potential  to describe the interatomic interaction of these 240

two materials. For a Si/Ge interface, 25 unit cells of Si are included 

to match the cross section of 24 unit cells of Ge. In order to 

quantitatively see how the lattice mismatch affects the phonon 

transmission across the interface, they modified the potential of 

germanium to change its equilibrium lattice constant but keep the 

harmonic force constants unaffected. The study of the relaxed 

interface formed from two semi-infinite bulk materials shows that 

lattice mismatch increases the lattice disorder in the interfacial 

region, as shown in Fig. 16a and decreases the adhesion energy, 

which in turn lowers phonon transmission (See Fig. 16b) and 

reduces the interface thermal conductance across the interfaces. 

When vacancies or alloying layer exist in the interfacial region, the 

phonon transmission is found to be lower than the ideally sharp 

interface.

In addition to the effects of lattice mismatch, species mixing at 

the interfacial region might affect the phonon transmission as well. 
241Tian et al.  applied the NEGF method to calculate the phonon 

transmission across an ideal (sharp) and rough Si/Ge interface. They 
242used both Stillinger-Weber potential  and first-principles to generate 

the harmonic force constants of silicon, and these force constants are 

assigned for the whole Si/Ge interface. The phonon transmission was 

found to continuously reduce when the thickness of the interfacial 

region with atomic mixing changes from 0 to 8 layers. The 

roughness induced enhancement of phonon transmission was 

attributed to the two reasons. One is that the roughness softens the 

abrupt change of acoustic impedance at the interface and facilitates 

phonon propagation, and the second one is that mixing layer allows 

phonons with large incidence angles, which would otherwise be 

internally reflected at the interface, to be transmitted.

To assess the importance of local force field difference on 
210phonon transmission across interfaces, Gu et al.  employed the 

higher-order force constant model to extract harmonic force 

constants from the first-principles calculations. As a feasibility 

demonstration of the proposed method that integrates higher-order 

force constant model from the first-principles calculations with the 

atomistic Green's function, they studied the phonon transmission in 

the Mg Si/Mg Si Sn  systems. When integrated with the atomistic 2 2 1−x x

Green's function, the widely used mass approximation is found to 

overpredict phonon transmission across the Mg Si/Mg Sn interface. 2 2

The difference can be attributed to the absence of local strain field-

induced scattering in the mass approximation, which makes the high-

frequency phonons less scattered. 

Phonon transmission across multilayer structures

A superlattice has a structure where two or more different 

materials are grown to a specific thickness in alternating layers. The 

thermal properties of superlattices have been extensively studied, as 

its possible application in thermoelectrics and lasers. The thermal 

conductivity of superlattices could be significantly lower than their 

bulk counterparts. A few theories have been proposed to explain the 

low thermal conductivity based on various angles to model 
203,243phonons.  Compared with other methods, the NEGF approach 

could naturally consider the atomic details in the superlattice and 

provide the detailed frequency-dependent information on phonon 

transport.
211Li and Yang  investigated the phonon transmission across 

Si/Ge superlattice sandwiched between two Si contacts. In the study, 

both the period thickness L (with L/2 of Si and L/2 of Ge) and the 

number of periods N could affect the phonon transmission across the 

multi-layered superlattice-like structures. With the increasing 

number of periods, the phonon transmission generally decreases and 

eventually converges. As the number of periods increase from 1 to 4, 

the phonon transmission is found to decrease dramatically. The 

reduction could be understood by the multiple interface effects, since 

more interfaces are more likely to scatter phonons. When the number 

of periods is larger than 4 periods, the phonon transmission 

reduction with N become slight and the phonon transmission 

converges for N ≥ 10. This is attributed to the fact that superlattice 

phonon band has formed for the multilayer structure with 10 periods. 

When the number of periods are fixed at 10, more oscillations in the 

frequency dependent phonon transmission curve are found in the 

superlattice with smaller period thickness. The oscillations are 

originated from the band-folding-induced phonon modes at the zone 

edge, which are standing waves with zero group velocity and have 

little ability to travel through the device region. For the superlattice 

with larger period thickness, more modes are at the zone edge, 

leading to more oscillations in the phonon transmission curve.
212Tian et al.  performed a series of calculations on Si/Ge 

superlattice, but introduced rough interfaces to understand the 

phonon transmission in more realistic superlattices. Unlike the 

superlattice with smooth interface, where the phonon transmission 

converges with a few periods. the phonon transmission through the 

superlattice with rough interfaces is quite distinct and two regimes 

can be distinguished. For low-frequency phonons, the phonon 

transmission transmittance does not change as the number of periods 

is increased. But for high-frequency phonons, it keeps dropping with 

the number of periods.

Apart from introducing interfacial roughness to reduce the 
244phonon transmittance, Qiu et al.  also investigated the roles of 

aperiodicity of the superlattices. For the superlattices with 

aperiodicity, the transmittance monotonically decreases as more 

layers are added into the superlattices for phonons with frequency 
-1larger than 60 cm . The origin of the phonon transmittance reduction 

is similar to the that occurs in superlattice with rough interface, as 

the coherence is broken and phonons. If the interface roughness is 

included in the aperiodic superlattice, the phonon transmittance is 

enhanced compared with that with smooth interfaces. This can be 

understood as the interface mixing scatters phonons into all 

directions, reducing the effectiveness of phase cancellation and 

localization in purely one-dimensional structures.

5.3 Mode-decomposed non-equilibrium Green's 

function 
Albeit the NEGF approach has been successfully applied to calculate 

the frequency dependent phonon transmission for many systems 

under the harmonic approximation, it is highly desirable to obtain 

the mode-specific phonon transmission. The detailed information of 

the mode-specific phonon transmission could be useful as inputs in 
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Boltzmann transport equation based method to model the phonon-

interface scatterings. We will briefly discuss the implementations on 

calculating mode-specific phonon transmission in the NEGF 

calculations. 

The basic idea of computing the mode-decomposed phonon 

transmission is to find out the vibrational patterns corresponding to 

specific frequency and wave vector, and then to define the Bloch 

matrices that generate the phase change when the phonon 
245,246propagates.  Based on the Block matrices, the mode-specific 

transmission could be evaluated individually.

Following Ref. 246, similar to the decimation algorithm to 

calculate the surface Green's function as discussed in Sec. 5.1, the 

contacts are divided into sublayers. The equation of motion for the i-

th slice in the left contact is written as

 ( )L L 2 L L L L

1,0 1 0,0 0,1 1=i i iw- +- + - -H Φ I   H Φ H Φ 0  .                     (111)

This equation is solved from the corresponding eigenvalue equation

 ( )2 L L L
0,0 0,1 0,1 =w l l

+

- - -I H H H 0  ,                     (112)

where                 is the Bloch factor. Since the sublayers at the 

contact have translational invariance, any solution (eigevector) of 

Eq. (111.) satisfies                  . Unlike the usual practice to the obtain 

the frequency  by solving Eq. (112.), here  is set as a constant ω ω

number, and  is solved as an unknown variable. Then, Eq. (112.) is λ

transformed to an equation for λ

 ( )exp Likal =

 L L
1i il+ =Φ Φ

 ( )L 2 L 2 L

1,0 0,0 0,1 =l w l- + - -H u I H u H u 0 ,                     (113)

where u is the right eigenvector. By solving this equation, we can 

distinguish every phonon mode with frequency  through the ω

phonon eigenvector. Since Eq. (113.) is quadratic in  , two solutions λ

could be found. Meanwhile, for each  , N  eigenvectors could be Lλ

solved, which correspond to N  phonon modes. These 2N  modes L L

include N  right-going modes that are either evanescent waves that L

are decaying to the right or waves of constant amplitude that are 

propagating to the right, and the other N  left-going modes that can L

also be classified to evanescent and propagating waves. The right-

going modes are labeled as                                     while the left-

going modes are denoted as . Whether the modes are propagating       

or evanescent can be distinguished by examining the value of     , 

which is detailed in Ref. 246. Under the time-reversal symmetric 

transformation, another set of modes can also be defined as  .          

Any wave function in the contacts can be expressed as a linear 

combination of the bulk modes in the contacts. It is possible to 

construct the so-called Bloch matrices F using the solved wave 

functions through

ret(   )n +u  for n = 1, …, NL,  
ret(   )n -u

 l

adv(  )n ±u

 L L L L( ) ( ) ( ) ( )a a a a± ± = ± L ±F U U                       ,                         (114)

where                                      is a matrix where the columns consist 

of the normalized eigenvectors                             is a diagonal matrix 

whose diagonal elements are  . The Bloch matrix can be regarded       

as an operator that generates the phase change when phonon travels 

from one layer to the right layer. Instead of obtaining the Bloch 
246matrices through Eq. (114.), Ong and Zhang  suggested to compute 

them using the Green's functions via the surface Green's function of 

the contacts. In order to determine the mode-specific transmission, 

apart from the Bloch matrices, the information of how fast the mode 

a = ret or adv, L (   )a ±U 
(  )n

a ±u  and (   )n
aL ±

(  )n
al ±

travels from one layer to the other layer is also needed. The velocity 

matrices                  are diagonal matrix with its n-th diagonal 

element equal to the group velocity of the                    in the left 

(right) contact.

With the Bloch matrices and velocity matrices, the transmission 

between individual phonon channels in the left and right lead is 
246given by the t matrix, which has the form

L (+)V  ( R (+)V )
adv(   )n -u ( ret(   )n +u ) 

 1
1/ 2 ret 1 ret adv 1/2

R R D L L

L   R

2
( ) ( ) ( ) ( )

i

a a

w -
- +é ù= + + - +ë ût V U G U V        .            (115)

The square modulus of the matrix element    represents the   

probability of transmission from the m-th phonon mode in the right 

contact to the n-th phonon mode in the left contact and has a value 

between 0 and 1, if both modes are propagating modes, and equal 0 

if either one is an evanescent mode.
246Ong and Zhang  applied the mode-decomposed NEGF method 

to the study of phonon transmission across the graphene-hexagonal 

boron nitride interface. Fig. 17 shows the phonon transmission 
-1probability at  = 200 cm  on the (k , k ) plane. Their calculations x yω

show that the transmission probability depends strongly on the 

polarization and angle of incidence of the phonon mode. Yang et 
247al.  also employed this method to investigate mode-specific phonon 

transmission crystalline-amorphous interfaces. The amorphous 

layers could effectively reflect modes of frequency greater than 

around 3 THz, but transmit phonons below this frequency. 

2

,m  nt

Fig. 17 Transmission probability for phonon modes on the (k ,k ) x y
−1plane at ω = 200 cm . The transmission probability is indicated by 

the color bar. Reproduced from Ref. 246, with permission from 

American Physical Society.

6. Numerical solution of phonon Boltzmann 

transport equation
Phonon BTE plays an important role in in-depth understanding of 

micro- and nano- scale heat transfer. When the characteristic length 

scale of the system is comparable to the phonon mean-free-path but 

larger than its wavelength, and the phase coherence effects are 

unimportant, particle-based approaches based on the phonon BTE 

are efficient and widely used tools. In general, there are three kinds 

of solutions for phonon BTE: (a) Monte Carlo (MC) method; (b) 

lattice Boltzmann method (LBM); (c) deterministic methods. MC 

simulation is especially flexible for use with complex geometric 

configurations and can readily include different scattering 

mechanisms. However, it requires relative large computational costs 
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248to reduce the random error. As a faster solver, LBM  is also easy to 

deal with complex structures, but the results are severely limited by 

the finite angular discretization in the grid model. Considering the 

similarity between the phonon BTE and the radiative transfer 

equation (RTE), deterministic solutions based on a variety of 

discretization techniques have been developed. Deterministic 

solution is faster than MC but it is more difficult to handle very 

complex geometries. Due to the major limitation of angular 
249discretization of LBM,  it is not widely used for phonon BTE, and 

thus it will not be discussed here. The MC method and deterministic 

method based on discrete ordinate method (DOM) will be reviewed 

in details in this section.

6.1 Algorithm of MC method    

MC simulation has been proven to be a favorable stochastic method 

to solve the phonon BTE. It can well handle the transport problems 

involving complicated geometries, multiple scattering events, and 

even the heat wave effect. Two typical kinds of MC methods are 

often used to simulate phonon transport in nanostructures: the 

ensemble MC and the phonon tracing MC. The ensemble MC 

method simulates the trajectories of all phonons simultaneously at 
239,250-255 250each time step.   Early in the 1990s, Peterson  used it to 

simulate phonon heat conduction process under Debye approximation. 

Afterwards, this method is used to calculate the effective thermal 
239conductivity of various nanostructures, including composites,  

253nanoporous silicon,  etc. As for the phonon tracing MC method, the 

trajectories of individual phonons are simulated independently, 
28,256-259 gaining a significant reduction of computational expense.

256Klitsner et al.  used the phonon tracing MC simulation to study 

ballistic heat conduction process in the silicon crystals at an 

extremely-low temperature, where the influence of internal phonon 

scatterings can be neglected. Then, this method has been extended to 

simulate phonon transport processes involving internal phonon 
257,258scatterings.   Moreover, phonon MC simulations can also be used 

to investigate transient heat conduction, e. g. thermal conduction in 

materials during ultrashort pulse laser heating process in TDTR 

measurements, and heat wave phenomena, where partial derivations 

of distribution function to time are taken into consideration. Jean-
257Philippe M. Peraud et al.  developed the deviational MC simulation 

method and studied the evolution of surface temperature in TDTR 

measurements. Using the similar simulation method, i.e. the phonon 
28,260-262tracing MC simulation method, Tang et al.  investigated the 

thermal wave phenomena in transient phonon ballistic-diffusive 

regime. Actually, ensemble MC simulation method is a transient 

method, which realizes a steady state process by a long-time 
263transient process. For example, Lacroix et al.  simulated the heat 

conduction in silicon nanofilms at both steady and transient state 

using ensemble MC simulations. In detailed manipulations, Debye 

approximation assuming a linear phonon dispersion, and the gray 

approximation which assumes phonon properties are frequency-

independent, are often adopted in MC simulations.  Indeed, the basic 

disciplines for the gray and non-gray MC simulations are exactly the 
253same;  therefore, the relevant details of phonon dispersion 

properties in MC simulations are not emphasized in the followings.

In this section, the basic discipline and algorithms of MC 

simulations for phonon heat conduction process, will be presented in 

detail. 

Phonon tracing MC method    

In practice, what we simulate is the prescribed phonon bundles 

but not actual phonons. The intensity of each phonon bundle is 

defined as, , where E is the emission phonon energy per area W=E/N

per unit time from the boundary, and N is the number of phonon 

bundles that we trace in MC simulations. The emitting phonon 

energy, E, is dependent on the boundary temperature,

 max,

0

(  )
4

p

B
g

p

T
E v C d

w

ww w=å ò        (116)

 2
r i i
= + ´s      s         s   n  n        (117)

in which  is the incident direction vector,  is the reflect direction s si r

vector, and  is the unit surface normal vector. While p = 0  n

corresponds to the diffusive scattering, the reflecting direction vector 

should be regenerated. 

Basic principle to solve the phonon Boltzmann transport 

equation and phonon tracing process are the same for steady state 

and transient cases, while in transient simulations, time discretization 

is required. Detailed procedures for transient phonon-tracing MC 

simulation are shown as Fig. 18 and following statements,

(1) Initialization: Input phonon properties (e.g. frequency, 

wave vector, polarization, group velocity and relaxation time), and 

set total number of phonon bundles N and time step length dt. 

(2) Phonon bundle emission: Draw the initial properties of a 

phonon bundle according to the nature of the emitting boundary. 
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in which                                                is the phonon density of 

states, and T  refers to the boundary temperature. N must be large B

enough to preserve the simulation accuracy, and energy conservation 

is guaranteed by conserving the total number of phonon bundles.

The position vector of phonon bundle is defined as ,  r = [x,y,z]

and the directional vector is                                                                 , 

(   )BEC f T Dw w w= ¶ ¶h ,  and (  )D w

 
[ ]cos(   ),sin(   )cos(   ),sin(   )sin(   )s q q j q j=

where θ is the polar angle and φ is the azimuthal angle. Besides, for 

non-gray simulations, phonon properties, including dispersion 

relations and relaxation time, which can be obtained from the first-

principles method and some empirical models, should be input for 

initialization. With gray approximation, phonons travel with one 

average group velocity and the scattering rate is characterized by an 

average phonon MFP. In addition, heat capacity is generally 

approximated to be constant under conditions of small temperature 

variations, which can linearize the relation between phonon intensity 

and temperature since accurate derivation will give a result that 

phonon intensity is proportion to fourth power of temperature.

Here, the two most common boundary conditions, i.e., 

isothermal and adiabatic boundaries, are discussed. An isothermal 

boundary holds two functions: First, it emits phonons into the 

computational domain; second, it also serves as an absorbing 

boundary to ensure energy conservation. When a phonon bundle 

emits from an isothermal boundary, its intensity is given in terms of 

the boundary temperature, and the boundary phonon emission 

distributions, including angular and spatial distributions, should be 

obtained according to the properties of boundary. In principle, an 

isothermal boundary is usually set as phonon black-body in analogy 

to the black-body wall in photon transport, that is, phonons arriving 

at it will be completely absorbed. In contrast, for adiabatic boundary, 

all phonons that strike it will be reflected back into the 

computational domain. A specular parameter, P, is introduced to 

describe the possibility of phonon specular scattering at such 

boundaries. It can be expressed as , in which is                                  Δ

the root-mean-square value of the roughness fluctuations and  is  λ

phonon wavelength. When p is equal to 1, the phonon scattering is 

completely specular, and we then have

 ( )3   2      2exp   p l= - D16P



These properties, including position  traveling direction r  = [x ,y ,z ]  0 0 0 0

s, polarization p, angular frequency  , etc., are determined by ω

random number sampling. If the number is larger than setting 

number, then tracing process stops; otherwise, go to step (3).

(3) Phonon bundle moving: Generate dimensional phonon 

free path l  based on phonon mean free path function                      , s  

the minimum dimensional distance between phonon at current state 

and boundary l , and dimensional phonon moving distance l  at b d

current time step. Determine the next phonon moving distance l  and i

moving time l /v  by choosing the minimum value among the above i g

three distances.

(4) Phonon scatterings and reemissions: Determine phonon 

scattering events by actual phonon moving distance. If l =l , then i b

phonon-boundary scattering occurs, phonon tracing process stops for 

isothermal boundary and phonon is absorbed and reemitted at the 

adiabatic boundary (back to step (2) and continue); if l =l , phonon i s

 
( )ln  1

l
l Kn R= - -

Fig. 18  Phonon tracing algorithm schematic for transient phonon tracing MC simulation.

experience internal scatterings; if l =l , phonon moves in the previous i d

state without being scattered.

(5) Phonon bundle tracing termination: Calculate the total 
*time at the current step, if setting total time t  is less than the current 

total time, tracing process of this phonon bundle stops; otherwise, 

move to step (5) and continue.

To obtained final temperature and heat flux density data with 

respect to time and location, location and time of phonons and 

phonon scatterings should all be recorded. For temperature, it can be 

calculated or defined based on density of scatterings and density of 
252,258phonons , respectively. Heat flux is calculated based on its 

definition, i.e. energy (phonon bundles) transmitted across unit area 

during a time step.

Ensemble phonon MC method  

Ensemble phonon MC method, which is also called directional 

simulation MC method, can solve the phonon BTE in kinds of forms 
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264including exact form with full scattering matrix  and linearized 
251form with or without relaxation time approximation.  The first step 

to carry out this simulation is to initialize phonons in each 

computational cells based on frequency distribution, polarization 

probability, and relation between temperature and phonon number. 

And then, phonons drift with phonon group velocity and experience 

internal and boundary scatterings. Treatment on phonon boundary 

scatterings is the same as that in phonon tracing MC method, while 

the most important difference between these two methods is how to 

model the internal phonon scatterings. To simulate the physical 

process of phonon Boltzmann transport equation of exact form with 

full scattering matrix, and linearized form with temperature 
239dependent relaxation time,  phonon scatterings for next step should 

be determined by all phonon states, i.e. phonon distribution, at the 

current step. As a result, information of all phonons should be 

recorded at the same time, which is much different from that in 

phonon tracing MC simulations where phonon scatterings are 

independent for each phonon. It should be noted here, provided that 

relaxation time is temperature independent, ensemble MC simulation 

method is almost the same as phonon tracing MC simulation. Fig. 19 

illustrates the algorithm of the ensemble phonon MC method. 

Basically, we divide this process to six procedures:  

(1) Initialization: Input phonon properties, discrete the 

simulation box into several small zones and set the total number of 

phonon bundles according to initial temperature distribution for each 

simulation zone.  

(2) Phonon bundle moving: Calculate the traveling length   Dr

until the first scattering event and renew the position of phonons, 
r =r +Drsnew 0 . In this step, all information of phonons at current state 

should be recorded if phonon free path or relaxation time depends on 

temperature and phonon distribution.

(3) Boundary scattering: When a phonon bundle collides 

with a boundary at , set . If the boundary is non-absorbing,  r  r =rB new B

the phonon bundle should be reflected back into the domain. Then, a 

random number is drawn. If this random number is less than the 

specular parameter P, the boundary scattering is specular; otherwise, 

the boundary scattering is diffusive. If the boundary is absorbing, 

phonon bundle is absorbed by the boundary, and properties of this 

phonon bundle are then reset according to the temperature of the 

boundary.

(4) Phonon bundle internal scattering/reemission: If a 

phonon bundle does not collide with boundaries, the phonon should 

experience internal scatterings at . Then, we set  and proceed  r  r =rnew 0 new

to (2). 

(5) Iteration process: Since phonon free path or relaxation 

time depends on local temperature or local phonon distribution, 

iteration is needed to ensure correct temperature distribution and 

selection of phonon free path. Phonon and temperature distributions 

obtained from current simulation process are set to be the initial 

conditions, and continue the simulation .

(6) Termination of the simulation: The simulation is 

terminated once difference between current phonon distribution and 

last one is smaller than setting criterion.

Fig. 19  Schematic for ensemble phonon MC simulation.

Issues of periodic boundary condition 

Study on the thermal conductivities of composite and phononic 

materials that frequently hold periodic or quasi-periodic internal 

nanostructures is of essential importance, due to their extensive and 
265,266promising thermal related applications in engineering.  For 

instance, researchers have demonstrated that the effective thermal 

conductivity of silicon films etched periodic nanoscale holes can be 

dramatically reduced, with only a minor effect on electrical transport 

ability, leading to a significant improvement of the thermoelectric 
267performance.  For those nanostructured materials, with their 

characteristic lengths comparable to the phonon mean free path, the 

non-Fourier effects, such as ballistic transport and boundary 

scattering, can lead to the geometry- and size- dependence of their 

effective thermal conductivities. The MC technique has been 

extensively used to study this issue. 

When using the MC method to calculate the effective thermal 

conductivity, a temperature difference is usually imposed on the 

structure to induce a heat flux, as shown in Fig. 20, and then the 

effective thermal conductivity can be obtained by using Fourier's 

law, where q is the heat flux, L is the distance between these two 

phonon baths, and ΔT is the temperature difference. Isothermal 
251boundary condition  is usually used to establish the temperature 
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difference, owing to its simplicity. In such case, due to the end 
252effects,  the exact effective thermal conductivity of a large-area 

nanostructured material can be obtained only if the simulation results 

will no longer vary with further increasing the number of periods 

between the two phonon heat baths, which results in a considerable 

large computational expense.     

In order to reduce the computational expense, periodic 

boundary condition is needed in MC simulations. With using 

periodic boundary conditions, the effective thermal conductivity can 

be obtained by simulating the phonon transport process only in one 

or several repeating units. As shown in Fig. 20, the periodic 

boundary conditions can be readily imposed in the lateral direction 

by letting the phonons arriving at the lateral boundary reenter the 

domain from the opposite one, without changing momentum or 

energy. By contrast, in the temperature-gradient direction, the 

periodic boundary conditions should be set delicately to minimize 

the end effects. 

 

Phonon heat sink
(hot)

Phonon heat sink
(cold)

K

Periodic

q

LTD

Fig. 20 Schematic for effective thermal conductivity calculation 

using Monte Carlo simulations.

Periodic conditions in Ensemble phonon MC method  
239Jeng et al.  proposed a type of periodic boundary condition 

specially for the ensemble MC simulations, in analogy to the 

periodic boundary condition developed for the deterministic BTE 

solution. A certain number of phonon bundles are emitted from both 

the left and right boundaries during each time step to induce a net 

heat flow that is equal to the prescribed value. The number of 

phonon bundles, N , of each boundary emitted into the emit

computational domain in each time step is given by

 

absorb

emit

emit

n

Q   S

N
S

w

w

æ ö
± +ç ÷

è ø=
å h

h

       (118)

realized by maintaining a pool of leaving phonons, recording their 

velocity, direction, position, and flight time, and determining the 

properties of each emission phonon by randomly drawing from the 

pool. The pool should be refreshed after each time step. In the paper 

by Jeng et al., this periodic boundary condition was applied in the 

heat conduction simulations of nanoparticle composites. Then, 
252 255following the method by Jeng et al., Hao et al.  and Péraud et al.  

studied the thermal transport in some other periodic nanostructures.  

Periodic conditions in phonon tracing MC method  

As for the phonon tracing MC method, due to the demand of 

absorbing boundaries as the termination of individual phonon tracing 

process, the periodic boundary condition is inapplicable indeed. In 
257order to overcome this restriction, Péraud et al.  proposed that the 

phonon tracing process could be terminated after several scattering 

events with only a small effect on the simulation accuracy. This 

scheme is derived from their numerical observation that after several 

scattering events, a phonon bundle's properties are almost 

completely randomized. However, it is not easy to determine the 

number of scattering events a phonon bundle should undergo before 

its tracing process can be terminated, and a rigorous proof is also 

lacking that this scheme can indeed approach to the exact thermal 

conductivity value of a nanostructure with an infinite temperature-

gradient directional length where the end effects have been 

eliminated. 

Actually, the conventional phonon tracing MC method cannot 

efficiently handle the transport problems in large-area nanostructured 

materials due to the inapplicability of periodic boundary condition. 
268Regarding this issue, Hua et al.  developed a two-step phonon 

tracing MC method, which greatly reduces the computation cost 

without degrading the accuracy. The algorithm of the two-step 

in which Q is the prescribed heat flow, whose sign depends on the 

boundary emission direction,  S is the scaling factor  representing the 

number of phonons contained in each bundle,   is the total                   

phonon energy leaving the computation domain, and  is the ωemit

average phonon frequency corresponding to the local boundary 

temperature, which is obtained by extrapolating the temperature 

profile inside the computational domain to the boundary. When a 

phonon bundle reaches one of the temperature-gradient directional 

boundaries, it is considered leaving that boundary. The pattern 

velocity, direction, position, and remaining flight time of phonon 

emission at one boundary is assumed to be the same as the pattern of 

phonon leaving the opposite boundary. This implementation is 

absorb
n

S wåh

Fig. 21 (a) Two-dimensional periodic silicon nanoporous film: the 

period is denoted by L  and the pore radius is R . (b) Cross-plane heat p p

conduction: the heat flow is along pore axis (along x-direction). (c) 

In-plane heat conduction: the heat flow is perpendicular to pore axis 

(along y-direction).
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Fig. 22 illustrates in-plane and cross-plane effective thermal 
conductivities of 2D periodic nanoporous silicon films with various 
periods (L  = 300, 1100 nm) at room temperature as a function of p

porosity. Then, the corresponding predictive models were derived 
based on the simulation results, 
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with the in-plane ( ) and cross-plane ( ) geometrical factors equal α αin cr

to 2.25 and 4.65, respectively.

phonon tracing MC method is concluded as two basic simulation 

steps: 

(i) Phonon transport process is simulated in the initial unit to 

obtain the initial phonon transmittance and the phonon emission 

distributions at the internal virtual boundary; 

(ii) According to the phonon emission distributions at the 

internal virtual boundary, phonon transport in the internal unit is 

simulated to obtain the internal phonon transmittance. 

By combining the initial and the internal phonon transmittances, 

the total phonon transmittance and the effective thermal conductivity 

of the whole structure can be calculated.

MC simulation examples

This section will offer some examples using MC method to 

study the phonon heat conduction within various nanostructures. 

Particularly, the MC method was used to study the anisotropic heat 
269conduction in the 2D periodic nanoporous films.  Fig. 21a shows 

the structure of a 2D periodic nanoporous film that is a typical large-

area nanostructured material, and thus the two-step algorithm stated 

above can be applied in the MC simulations. The heat flow is along 

the x-direction (along the pore axis) in the cross-plane heat 

conduction as shown in Fig. 21b, while the heat flow is along the y-

direction (perpendicular to the pore axis) in the in-plane heat 

conduction as shown. 

Fig. 22 In-plane and cross-plane effective thermal conductivities of 2D periodic nanoporous silicon films with various periods (L  = 300, 1100 p

nm) at room temperature as a function of porosity.

Heat wave phenomena have been predicted for several decades 

after proposition of the C-V model, a well-known modification for 

the classical Fourier's law. By solving the phonon Boltzmann 

transport equation in transient state using phonon MC method, heat 

wave transport in phonon ballistic-diffusive regime are investigated 
260systematically  with following initial and boundary conditions, 
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11 2 -1 where q =5×10  W/m , t =2 ps, and ω =3.14 rad∙ps shown in Fig. max 0 p0

23, and

       (122)

Temperature profiles calculated by the MC simulations and the 

C-V model are shown in Fig. 23. The C-V model predicts a non-

dispersive dissipative thermal wave and the velocity of the wave 

front and the wave peak are both equal to . However, the MC         

simulation predicts a dispersive dissipative thermal wave and the 

velocity of the wave front equates to v . Waveform of the heat pulse g

is not kept during the propagation process and barely influences the 

shapes of the temperature profiles in MC simulations as shown in 

Fig. 24.

 
g3     /3v

6.2 Deterministic solution
The phonon BTE has been described in Eq. (3) in Sec. 2.2. To 

numerically solve this equation using deterministic method, several 

simplification are usually made. The first is the relaxation time 

approximation, Eq. (6). The volumetric energy density per unit 

frequency per unit solid angle can be obtained from distribution 

function by   ( unit:  ) where  3                                J/m (rad/s) sr Dp, ( , ) ( )p pe n p Dw w w w¢ = h
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Fig. 23  Schemes of the heat pulse and the system of MC simulation for single-crystal silicon nanofilm (a) sinusoidal heat pulse; (b) 

rectangle heat pulse; (c) simulation system including the regimes of phonon emission and scattering.

Fig. 24  Temperature distribution profiles calculated by MC simulations and the C-V model under the stimulation of (a) sinusoidal heat 

pulse; (b) rectangle heat pulse. Reproduced from Ref. 270, with the permission of AIP Publishing.
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denotes the phonon density of states and p is the polarization. The

phonon energy density  (unit: ), where    is a discrete 3                  J/m sr   

frequency interval, is used to define the energy form of phonon BTE 

is then given by 
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Note that here we are solving BTE to obtain the temperature and 

heat flux distribution over space and time,                is the phonon 

energy density in the position , in direction of propagation , time , x s t

and per unit volume and per unit solid angle within the frequency 

band  for polarization p and frequency . The group velocity is Δω ω

denoted by                                  . Because of energy conservation ,

rule and purely randomly act of phonon for collision the integration 

over collision part will be zero: 
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The equilibrium term         equals to                         and T  is the L

lattice temperature. For the gray modeling case, as a simplified version 

of the BTE, it equals to   . The boundary conditions include                 

the isothermal, specular, diffuse, and periodic, which is similar to 

those described in the MC part.

 0
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BTE is a seven-dimensional nonlinear integro-differential 

equation, including 3 spatial coordinates, 3 wave vector coordinates, 

and time. The form presented above assumes isotropic wave vector 

spaces so the three wave vectors reduce to the direction of wave 

vector and the frequency of the mode. It also assumes relaxation 

time approximation is valid so that it can reduce to a seven-

dimensional linear partial differential equation, as shown above. 

Deterministic solution of the BTE requires both angular and spatial 

discretizations. In addition, if transient form is considered, the time 

discretization is also needed. As the similarity between the phonon 

BTE and the RTE has long been recognized, deterministic solution 
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Here i denotes the energy density in the direction s , and these i

equations are coupled through the source term  by Eq. (124.).The       

standard DOM use uniform division, as shown in Fig. 25b.
 0

,p
ew

of the BTE can therefore adopt the methodology of deterministic 

solution of RTE. The discrete ordinates method (DOM) has been 
271used extensively for the numerical solution of RTE,  so it has been 

272-274borrowed to the phonon transport area.  The DOM is also called 

S  approximation. The basic idea is to assume that the intensity or N

energy density in a solid angle does not change with direction so the 

angular space can be divided. As such, the entire 4π solid angle is 

divided into different control angles, and each has a preferred 

direction s as shown in Fig. 25. Using DOM, there will be one i, 
275 partial differential equation for each direction

Fig. 25 In the solution of phonon BTE, the angular dependence of energy flux must be considered. 

Therefore, the angular domain needs to be discretized. (a) Spherical coordinates; (b) uniform 

discretization of solid angles. 

There is a shortcoming arising from the discrete angles, i.e., the 
276ray effect.  Ray effect arises from the approximation of a 

continuously varying angular nature of radiation by a specified set of 

discrete angular directions. For phonon BTE, such an unphysical 

effect is more pronounced in the ballistic regime (larger Kn) where 

the phonons experience less scattering. As such, when we use 

standard DOM, we need to use refined angular division and compute 

for more directions to get accurate result. This will cost much more 

computation time. To reduce the ray effect, we can use the control 

angle discrete ordinates method (CADOM). On the basis of the 

standard DOM, after dividing the angular space uniformly as shown 

in Fig. 25b, CADOM performs analytical integration over each 

control angle. To further reduce inaccuracy, higher order numerical 

integration using quadrature instead of uniform divisions can be 

performed. As shown in Fig. 26, although there are still some ray 

effect for Kn =10, it is much improved as compared to DOM (see 

Ref. 276 for comparison). The details of various DOM approaches 

are presented in standard radiative heat transfer textbooks, such as 
271the one by Modest.  Apart from angular discretization, deterministic 

solution of the phonon BTE also require spatial discretization to 

further reduce the partial differential equation Eq. (125.) in to 
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algebraic equations. The most widely adopted spatial discretization 
273,275,277-279is the finite volume method (FVM),   due to the conservation 

276property. Alternatively, the finite element method  and meshfree 
280method  are also been used. 

Recently, a finite-volume discrete unified gas kinetic scheme 

(DUGKS) for molecule flows ranging from continuum to rarefied 
281 281regimes has been developed.  Guo and co-workers  used it in 

phonon transport. DUGKS improved the stability of the FVM by 

making a switch from semi-implicit scheme to explicit scheme by 

mathematical simplifications. Different from standard FVM which 

uses upwind scheme to deal with convective term, DUGKS 

integrates the equation along characteristic line to calculate 

convective term. Compared with standard FVM, DUGKS has better 

accuracy and stability and it has asymptotic preserving property, 

which is important when we calculate the region from diffusive to 
281,282ballistic.  The DUGKS approach, however, suffers from the 

limitation of Courant–Friedrichs–Lewy (CFL) condition. An 

approach based on the semi-Lagrange method is also developed by 
283Zahiri et al. to solve non-gray phonon BTE,  which can further 

overcome the CFL condition that limits DUGKS and be 

unconditionally stable. 

Due to the complexity of BTE, the computational cost of 

solving BTE is quite high. Most of the researches are still focusing 

on the solution of 2D BTE. Many are just “toy problems”, such as 

the one shown in Fig. 26. Therefore, efficiency of parallel algorithm 

is very important to achieve device level simulation using full non-

gray BTE. Different parallel strategies (domain decomposition, band 

decomposition, angular decomposition) have been discussed. In 

addition, since phonon has a broad mean free path distribution 

Fig. 26 Temperature distribution contour and the mid-line temperature (y*) distribution of a square domain with thermalizing boundary 

condition at the boundaries. The results are obtained by solving gray BTE using the CADOM combining semi-Lagrange method. The upper 

boundary has higher temperature, while the other three boundaries have the same temperature. Three different angular meshes 2×2, 8×8, and 

16×16 are presented. (a) is for Kn = 0.1 and (b) is for Kn =10. It can be seen that the ray effect is more pronounced at small angular discretization 

and large Kn. It is improved as compared to DOM.  

spectrum, it imposes additional difficulty to solve non-gray BTE 

throughout the ballistic to diffusive regime. The major reason is that 

the phonon intensity is strongly directional dependent in the ballistic 

regime and more isotropic in the diffusive regime. A few hybrid 

solutions have been proposed, for example, to couple BTE method 
277with the solution of heat diffusion equation,  and to couple DOM 

284 approach with spherical harmonic method (P  approximation).1

These techniques allow for better computational efficiency.  Only 

very recently, the non-gray solution of 3D heterostructure using an 

unstructured mesh has been demonstrated. The structure was 

discretized using 604,054 tetrahedral control volumes, 400 angles, 

and 40 spectral intervals (or bands), resulting in 9.7 billion 

unknowns. These computations were performed using 400 

processors in parallel, and required 156 GB of RAM and 1.1 h per 
275time step.

7. Hybrid/Coupling methods
The trend towards increased circuit integration on smaller electronic 

devices has placed a greater demand on the effective thermal 

management to maintain device temperatures at acceptable levels. In 

practical situations, a large number of micro- and nano- scale 

components are packaged, making the heat conduction process be a 

multi-scale problem. For example, the length scale of GaN high 

electron mobility transistors (HEMTs) ranges from ~10 nm (thickness 
285of the barrier) to ~1 mm (die length).  Accurate thermal analysis of 

such multi-scale heat conduction is challenging and time-consuming. 

The traditional Fourier's law has been widely used for chip-package-

level thermal simulations, but it cannot capture nanometer-scale 
286thermal effects.  The aforementioned computational methods, such as 
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MD and phonon BTE, describe non-Fourier heat conduction at micro- 

and nano- scale well. However, their usage has been severely limited 

by the high computational complexity. As a result, the routine analysis 

of the multi-scale heat transport process by the present methods is 

nearly impossible. As shown in Fig. 27, first-principles calculation is 

an atomic level method which requires to solve Schrodinger's 
287equation.  The applicable length scale of MD simulation is limited to 

tens of nanometers, since it focuses on the movement of every atom or 
288molecular . Approaches based on numerically solving phonon BTE 

such as phonon MC and DOM are flexible for use with larger scale 

structures, but they are still very difficult to use when the length scale 
248,289approaches millimeter.   In order to simulate the multi-scale heat 

conduction ranging from nanoscale to macroscopic scale, the hybrid 

method that couples methods suitable for different length scale has 

received a great deal of recent attention, its prospects for high accuracy 

and efficiency make hybrid method a promising development 

direction.

Although several studies have been published for the hybrid 
89,277,284,290-294methods of heat conduction during the last decade,  

compared with these individual computational methods, research on 

hybrid methods is still young and needs future work. In general, 

there are two ways to achieve the hybrid method for heat 

conduction: (a) de-coupled scheme, which refers that the information 

is transferred by some parameters and different methods for different 

length scale are conducted individually; (b) coupled scheme, where 

the solutions of different methods will be coupled during their 

solving process, and the final full solution correspond to the 

converged results of different methods. A brief introduction to these 

two types of hybrid methods will be given in this section, including 

their basic ideas, advantages and limitations. 

De-coupled scheme

The de-coupled scheme is mainly applicable for the coupling of 

microscopic and mesoscopic methods, since both the methods deal 

with the detailed information of heat carriers and it is easy to achieve 

information exchange just by several parameters. The most well-
89,295 known technique is coupling first-principles calculation with MD  

or phonon BTE to model heat transport in solids, where the atomic 

potential function or force constant are the information transfer 

parameters, as we mentioned in Sec. 3. From this point of view, first-

principles phonon BTE method can be regarded as one type of the 

decouple scheme.

The results of MD simulations are very sensitive to the form of 

Fig. 27  The common computational methods for heat conduction and their scope of application.

the potential function used, while those of phonon BTE heavily 

depend on the phonon dispersion and scattering. By coupling with 

first-principles calculation, the concerns about the inaccuracy of the 

empirical settings for these important parameters fall away. 

However, MD simulation is very difficult to be used for system at 

micrometers. Even for the mesoscopic phonon BTE, the solving 

procedures will be very inefficient when the length scale is larger 

than tens of micrometers. This limitation provides a motivation for 

coupling the microscopic or mesoscopic methods with macroscopic 

methods, which necessitates the development of the coupled scheme. 

Coupled scheme

Instead of using some parameters to transfer information, the 

coupled scheme runs different methods simultaneously and the 

information exchange is achieved during every iteration step. For 

example, solving BTE for all phonons in ballistic-diffusive heat 

conduction is a huge task in multi-scale processes, since it is very 

inefficient for phonons that are in diffusive regime. It inspired people 

to develop hybrid phonon BTE - diffusion heat conduction equation 

method, which is expected to be a promising solution for multi-scale 

heat conduction. 

Efforts have been devoted to improve the solving speed of 

phonon BTE by classifying the phonons and using different solvers 
284for different kinds of phonons. Mittal and Mazumder  spilt the 

phonon intensity into the ballistic and diffusive components, of 

which the former was solved by DOM or CADOM, and the latter 

was determined by invoking the first-order spherical harmonics (P ) 1

277approximation. Loy et al.  established a phonon group cutoff 

Knudsen number ( Kn  = 0.1 ), phonon bands with low and high c

Knudsen numbers are solved using a modified Fourier equation and 

phonon BTE, separately. The two solvers are coupled by the lattice 
296temperature. Allu and Mazumder  adopted the same idea of a cutoff 

Knudsen number. Full angular discretization was used for the high 

Knudsen number bands, while for others, the spherical harmonics 

approximation was utilized. 

These hybrid solutions of phonon BTE take advantage of the 

fast speed of macroscopic solver and the high accuracy of 

microscopic solver, making them work well for the multi-scale heat 

conduction process. Without much compromising on accuracy, the 

computation speed can be remarkably improved by several times. 

However, their results are strongly dependent on the phonon 

classification, whose criterion is still totally empirical now. In 

addition, phonon's properties will change by a large number of 

scattering mechanisms, resulting in a tedious calculation process as 
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phonons have to be reclassified after every scattering.

Fig. 28 The schematic diagram of the domain dividing hybrid 

method.

Another way to realize the coupled hybrid method is dividing 

the computation domain and using different solvers for different 

subdomains. As illustrated in Fig. 28, the whole domain can be 

divided into three zones: microscopic zone (subscript 'M') where 

methods of micro and nano- scale are adopted and macroscopic zone 

(subscript 'D') where Fourier's law or simple diffusion approximation 

are adopted, between which is the overlap zone at which solutions 

are exchanged to obtain the entire full solution. For the zones 

covering the micro- and nano- scale components, detailed 

computational methods are used to characterize these non-Fourier 

phenomena. For other zones that are little affected by the generator 

of non-Fourier heat conduction, simplified treatments such as 

Fourier heat diffusion equation can be used to substitute the complex 

microscopic analysis.

In fact, such zone dividing methods have been widely adopted 

in the fast simulations of fluid flow and radiation. In 1995, O'Connell 
297and Thompson  firstly presented a hybrid MD-continuum 

simulation method. The coupling is achieved by constraining the 

dynamics of fluid molecules in the vicinity of the MD-continuum 
298interface. Hash and Hassan  investigated different interface 

conditions for the techniques that coupled direct simulation Monte 

Carlo (DSMC) and Navier-Stokes equation and concluded that the 
299Marshak condition is the best choice. Wang and Jacques  adopted 

photon MC for zones near to the photon sources or the boundary. 

After the photon packet enters into the ambient media, it is converted 

to a virtual isotropic photon source and the diffusion theory is 
300applied. Hayashi et al.  also used diffusion approximation to 

substitute photon MC in the high-scattering regions. The heat flux at 

the zone interfaces worked as an exchanger of the information. More 

examples of the hybrid methods for fluid flow can be found in Refs.301-

304, including the coupling between MD and macroscopic solutions.

Since phonons have many similarities with molecules and 

photons, the domain dividing method is supposed to perform well 
294for heat conduction. Recently, Li et al.  developed a hybrid MC-

diffusion method for the ballistic-diffusive heat conduction in nano- 

and micro- structures. They considered that the phonon-boundary 

interactions are the major contributor of non-Fourier heat conduction 

and the middle zone of the system still follows Fourier's law. By 

using an alternating method and setting virtual phonon bath or 

specular reflection as the boundary condition for the MC zones, the 

results of the phonon MC and diffusion equation converged at the 

overlap zone. More importantly, the computation time could have a 

90% reduction at the most compared with the standard phonon MC 

method. The domain dividing hybrid method avoids the trouble of 

continually classifying phonons, but owing to the challenging 

information exchange between the microscopic and macroscopic 

variables, few works are reported. In addition, the partition of the 

whole system will be much more complex when considering the 

phonon mean-free-path spectrum.

The motif of the hybrid computational method is to combine 

both the accuracy and efficiency to achieve the fast simulation of 

multi-scale heat conduction. There are two ways to achieve the 

hybrid methods: the de-coupled scheme where different methods are 

adopted in order, and the coupled scheme which refers that different 

solvers run simultaneously. Thanks to the increased frequency of 

information exchange between different methods, the coupled 

scheme shows greater potential for the thermal simulation of actual 

used devices than the de-coupled scheme. The key of the hybrid 

method is how to establish an information bridge between different 

methods in a physically meaningful way. Approaches based on 

classifying phonons and dividing computational domain both have 

gotten some achievements in the fast solution of phonon BTE, but 

they still have many natural limitations. More work is needed to 

investigate better coupling manners, so that the hybrid method is 

able to provide unprecedentedly convenient guidance for 

engineering design.

8. Conclusion
First-principles BTE is a very powerful method that can 

predict the thermal transport properties from the only input of atomic 

structures. It takes the interatomic force constants as inputs and can 

predict the lattice thermal conductivity of crystalline solids. This 

method has been applied to various materials, including numerous 

bulk material and low-dimensional materials. It has been recently 

extended to metallic materials by including electron-phonon 

scattering effect and electron transport. This method is relatively 

new and still under fast development. There are several limitations 

as well. First, it is still limited to crystalline materials. How to 

consider amorphous material, alloys and nanostructures without 

introducing additional fitting parameters remains a fundamental 

challenge. From the computational point of view, it is still quite 

expensive. How to extract force constants efficiently and accurately 

is another major limitation. Also, the prediction accuracy for the 

low-dimensional materials needs to be further clarified.

MD simulations possess diverse and great advantages in the 

modelling of thermal transport properties. EMD simulation method 

is powerful in the calculation of bulk thermal conductivity of various 

materials, and NEMD method is widely used in the calculation of 

thermal conductivity at finite size and its length dependence, as well 

as the interfacial thermal resistance. The underlying mechanisms of 

thermal transport can also be explored from MD simulations. For 

example, vibration frequencies from density of states, phonon 

localization from participating ratio, phonon relaxation time and 

mean free path from SED simulations, and single-mode phonon 

transport from wave packet method. However, MD simulation for 

modeling thermal transport still has some limitations to be further 

developed. For instance, the modeling of the quantum effect at low 

temperature, lacking of empirical potential for complex materials, 

and insufficient modeling capability at large scale for real problems 

and applications, to name a few. Those limitations should be studied 

and resolved in the further developments of MD simulations. The 

analysis methods also have limitations in the applications, such as 

© Engineered Science Publisher LLC 201850 | ES Energy  Environ., 2018, 1, 16–55

Review  Paper ES Energy & Environment



the SED simulations limited to the crystalline, and wave packet 

method only valid at the low temperature. The analysis of thermal 

transport in amorphous from mode/frequency perspective still a 

problem that deserve to be resolved, such as in polymers.

Non-equilibrium Green's function is a useful tool to explore 

the phonon transport in nanostructures under the quasi-ballistic 

regime. It has been successfully applied to low-dimensional 

materials, interfaces between dissimilar materials, multilayer 

structures, and the dependence of the detailed atomic configurations 

on the phonon transmission and thermal conductance across these 

structures has been investigated. The implementation of calculating 

mode-decomposed phonon transmission makes it possible to 

integrate NEGF with BTE-based methods to model phonon transport 

in more complicated nanostructures.

Phonon BTE can be solved by MC method or DOM method. 

MC technique is a stochastic method to solve the phonon BTE with 

considerably simple algorithms, and it has been widely used to study 

nanoscale/ultrafast heat conduction within various nanostructures, 

including films, wires, nano-porous and composite structures, etc., at 

mesoscopic level, in both transient and steady states. DOM method 

is a deterministic in comparison with MC. It is computationally 

faster than MC but it is more difficult to handle complex geometry. 

To numerically solve BTE, microscopic information including 

phonon properties and phonon interface transmittance are required, 

which can be obtained by MD simulations or first-principles 

calculation. 

Hybrid/coupling methods become highly desired since there is 

a tremendous increase in computational complexity and cost when 

the length scale of the problem spans several orders of magnitude, 

necessitating the development of new methods which are able to get 

a good balance of the accuracy and efficiency. The widely used way 

is to combine micro-nanoscale methods with the macroscopic ones, 

which generally can be achieved by two schemes: (1) the de-coupled 

scheme where different methods are adopted in order, and (2) the 

coupled scheme which refers that different solvers run 

simultaneously. Although the performance of hybrid methods have 

been verified in the last decades, it is still a young computational 

method which needs further developments and applications.
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