
Machine Learning for Novel Thermal-Materials Discovery: Early Successes, Opportunities, 
and Challenges

High-throughput computational and experimental design of materials has becoming an increasingly important field in material science overall. 

However, this area of research has largely been only been emerging in thermal sciences, in part due to the computational and experimental 

challenges faced in obtaining thermal properties of materials. In this paper, we provide a current overview of some of the recent work and 

highlight the challenges and opportunities that are ahead of us in this field. In particular, we focus on the use of machine learning and high-

throughput methods for screening of thermal conductivity for compounds, composite and alloys and interface conductance. These methods have 

brought about a feedback mechanism for understanding new correlations and identifying new descriptors, speeding up the discovery of novel 

thermal materials. 
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EDITORIAL

Introduction
As humanity's energy use increases, so too do demands on materials' 

thermal and thermal-transport properties. For example, materials with 

thermal conductivities ( ) below 1 W/mK are needed for thermal κ
1insulation , and above 10,000 W/mK for heat management on next-

2generation consumer electronics and energy-generation technologies.  

To gain market acceptance, new materials must also satisfy other 

application-specific constraints, including electrical conductivity, cost, 

density, manufacturability, mechanical properties, durability, chemical 
3compatibility, and environmental impact.  From a scientific point of 

view, thermal and thermal-transport properties are governed by a 

handful of underlying materials properties factoring into the Boltzmann 

Transport Equation (BTE) that depend on structure and atomic 
4constitution.  In essence, the materials-innovation challenge in thermal 

sciences is more complex than multi-parameter optimization, as it 

involves not just the search for new materials, but the search for new 

physics.

Increasingly, materials science researchers are applying 

combinations of emergent machine learning (ML), high-performance 

computing (HPC), and automation tools to accelerate the rate of novel 
5materials discovery and development . This transformation in how we 

perform R&D reflects the community's desires for faster cycles of 

learning, deeper physical insights, greater sophistication in how we 

design, synthesize, and optimize materials, and a recognition that we 

must push physical limits if we are to make meaningful advances in this 

field in market- and societally-relevant timeframes. This review focuses 

on the thermal sciences, and is divided into two parts. First, we assess 

the state of the art in applying machine-learning methods to accelerate 

materials development. Second, we review current challenges attracting 

researchers' attention, as well as underserved areas in machine-learning 

methods for thermal sciences. In the outlook section, we describe future 

work standing between our present reality and a future vision of fully-

automated, self-driving laboratories that enable accelerated materials 

discovery and development.

As shown in Fig. 1, early successes focus on high-accuracy yet 

computationally expensive HPC to calculate underlying materials 

properties governing thermal transport. These parameters, which include 
6 4 7phonon density of states , thermal conductivity , Debye temperature , 

8-12and the elastic properties , can now be routinely computed using 
13, 14variants of density functional theory (DFT)  with reasonable accuracy 

4, albeit at a rate of a few dozens of compounds per year. To increase 

throughput and enable screening on the scale of hundreds of thousands 

of compounds, heuristic models and numerical approximations have 
15been developed , albeit with accuracies typically in the range of 20%, 

and with limited accuracy beyond interpolation. Additionally, new 

parameters of merit, for example the large splitting of acoustic and 
16optical phonon branches exemplified in boron arsenide , are being 

reported at a rate of a handful per decade. To experimentally validate 

these predictions, consensus has emerged surrounding best practices for 
17thermal property and transport characterization , which eliminate most 

18experimental artifacts and establish community-wide benchmarking .

Looking ahead, one important challenge is to develop faster and 

more accurate predictors of materials descriptors, toward enabling 

materials searches including millions of compounds. Machine learning 

has proven useful in this and related domains, to accelerate, augment, 
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19, 20and even leapfrog DFT, revealing difficult-to-calculate parameter .   κ

(Fig. 1). Ultimately, extending these predictive tools beyond 

interpolation may enable new physics-based descriptors to be 

discovered. High-throughput synthesis tools hold promise to solve the 

multiparameter optimization challenge intrinsic to the thermal sciences 

and related energy fields, as well as to provide valuable feedback to 

refine theoretical models. Machine-learning methods will be challenged 

by the unique topology of the thermal sciences, including the high 

degree of correlation between parameters influencing the BTE, 

complexity (e.g., microstructures and composition) across multiple 

length scales, and sparse — but extremely rich — data sets. Data 

challenges include transferring learnings across different platforms, and 

integrating disparate data repositories. Physics-based challenges include 

exploring wave effects of phonons, exceeding the amorphous (Cahill-
21Pohl) limit  on the low end of thermal conductivity, and extending 

phonon lifetimes on the high end.

The thermal properties of materials are very important for 

understanding thermodynamic stability of structural phases and their 

suitability for a variety of applications. High thermal conductivity 

materials are essential for efficient heat removal while low thermal 

conductivity materials can give rise to the next generation of 

thermoelectric materials and thermal barriers. Within computational 

abilities and experimental fabrication and testing, our community has 
16successfully predicted , synthesized and experimentally measured the 

22-24highest thermal conductivity material know to date . At the same 

time, computational predictions and experimental verification have also 
25-29led to discovery of a number of low thermal conductivity materials . 

However, there are not many systematic studies of classes of materials 

to guide us into understanding what material attributes contribute 

Fig. 1  Thermal Conductivity can range on a few orders of magnitude. Obtaining accurate values of thermal conductivity and understanding the physical 

reason for the thermal conductivity is always a challenge as calculations are computationally expensive and is only a one-way approach of tweak and 

observe. With Machine Learning, the cycle of material discovery is now complete where we can correlate thermal conductivity with descriptors, 

providing the feedback to speed up materials innovation and discovery.

towards thermal conductivity. 

To do so, we will require a high throughput platform whereby 

computational screening and experimental testing can be conducted on 

a large number of samples within reasonable computational and 
5experimental resources . High-throughput (HT) computational 

30screening is a rapidly expanding area of materials research . Increasing 

availability of computational resources have resulted in large databases, 
31and has  generated, for example, the AFLOWLIB.org consortium  the 

30, 32, 33 34 35Materials Project database , Citrination , among others . These 

databases and the application of HT has recently led to new insights and 
35-40novel compounds in different fields . However, despite the 

importance of thermal transport properties for many crucial 

technologies, there are to date only a few HT investigations into lattice 
15, 19, 20, 41, 42thermal conductivity . One main issue is that the determination 

of the thermal conductivity of materials is computationally demanding 

as it requires calculation of multiple-phonon scattering processes. The 

third-order anharmonic IFCs (inter-atomic force constants) required in 
4order to account for three-phonon scattering processes  with standard 

ways such as density functional theory (DFT) and density functional 
43perturbation theory (DFPT)  are generally computationally expensive. 

44This can either be based on the frozen-phonon approach  or the 
45temperature-dependent effective potential (TDEP) method , the latter 

based on first-principles molecular dynamics calculations at explicit 

temperatures, with the option to generate a canonical ensemble of 

supercell configurations using Monte Carlo sampling. An alternative 

approach to calculating thermal conductivity is based on the Green-

Kubo formulation which employs molecular dynamics simulations to 
46, 47calculate heat fluxes upon thermal equilibrium . This technique 

accounts for high-order scattering processes, but semi empirical 



potentials used in these calculations can lead to errors on the order of 
4850% .

A variety of simple methods have been devised to evaluate the 

thermal properties of materials at reduced computational cost. Early 

approximate implementations to compute the lattice thermal 

conductivity were based on semi empirical models to solve the BTE, in 
49, which some parameters are obtained from fitting to experimental data 

50. This reduces the predictive power of the calculations. The methods 

described above are unsuitable for rapid generation and screening of 

large databases of materials properties in order to identify trends and 
5simple descriptors for thermal properties . 

Early successes – theoretical modeling of thermal 

properties
a. bulk stoichiometric compounds

Despite the computational cost, there has been a few attempts to 

generate HT data for predicting thermal properties. The first large scale 
19HT attempt was done by Carrete et al.  The work concentrated on half-

Heusler (HH) compounds where unstable and zero-gapped compounds 

were screened by DFT. Then, full DFT calculations for k for a smaller 

subset of such compounds were carried out as a training set upon which 

random forest regression is used to build a classification model for the 

descriptors. IFCs were also predicted from random forest algorithm 

upon which good agreement between exact k and predicted k have been 

obtained (Fig. 2a). It is found that compounds are most likely to have 

low thermal conductivity if the average atomic radius of the atoms in 

structural positions A and B is large. HT screening based on Bayesian 

optimization was applied to a larger set of materials by Seko et al. (Fig. 
202c) . Two descriptors, namely density and crystal volume per atom, 

were used to provide a score upon which material databases can be 

screened in a HT fashion.

Despite these speed ups with ML methods, a small set of training 

data is still required upon which full calculations are necessary. There 

exist parallel efforts to develop computationally less expensive ways of 

calculating k.  Original models such as semi-empirical methods by 
49 50Allen  and Callaway  usually requires fitting parameters from 

15experimental data. A recent attempt by Miller et al. (Fig. 3a)  uses 

DFT data to fit to a semi empirical model based on Debye Callaway 

Fig. 2  (a) Frequency densities of the estimators of thermal conductivity at 300 K. κ  is Approximated κ  with anharmonic force constants from Mg Si  transf ω 2

and κ  is k prediction obtained random-forest regression. (b) Dependence of the Z score on constituent elements for compounds in the MPD library. forest

The magnitude of the Z score is shown by colors along with volume, V, and density, ρ, for each element.

model. However, most HT approaches still rely on DFT to some extent. 
42Recently, a much less computationally expensive approach (Fig. 3b)  

7used the “GIBBS” quasi-harmonic Debye model  to enable a fast HT 

method for computing k for a large class of materials. This approach 

only requires electronic DFT calculations and not calculations of the 

IFCs. At the same time, principal component analysis has been used to 

extrapolate IFCs at finite temperatures from a few sets of full IFC 

calculations to predict the thermal stability and k at finite temperatures 
41 51.  Qin and Hu  described a way based on the analysis of the harmonic 

(second order) IFCs to accelerate the evaluation process of obtaining 

accurate k by solving the cutoff distance problem. More recently efforts 

have been devoted to evaluate the phonon band structures and 

evaluation of thermodynamic properties for a large number of 
52compounds . For instance, Atsushi Togo's phonon database 

(http://phonondb.mtl.kyoto-u.ac.jp) with full phonon band structures and 

derived quantities for 1521 semiconducting inorganic crystal were 
6recently reported (Fig. 3c)  . With further development in HT methods 

for IFCs, we foresee that truely HT computational screening of k with 

DFT is possible in the near future.  

b. Aperiodic composites and porous materials

Unlike periodic compounds, composite materials and porous media 

have wide engineering applications but their effective thermal 

conductivity is a problem that first principle atomistic methods typically 

cannot tackle. To predict the effective thermal conductivities of 

composite materials, existing methods such as effective medium theory 
53 54(EMT) , heat diffusion equation , and Boltzmann transport equation 

55(BTE)  have been used. The EMT provides analytical models that can 

estimate the effective thermal conductivities of the composite materials 

but its accuracy is limited as it does not account for the effect of the 

distribution of constituent materials. In order to take in to account the 

details of materials distribution in a composite, direct solutions of heat 

diffusion equation will be necessary. Many numerical methods such as 
56 54finite volume method (FVM) , the finite element method (FEM)  and 

57the lattice Boltzmann method (LBM)  have also been developed. All 

these approaches are based on solving partial differential equations 
58(PDE) which are computationally costly. Recently, Zhang et al.  

designed a genetic algorithm to optimize the configuration of  silicon 
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germanium composites under multi-parameters for the best thermal 

conductivities (Fig. 4).  Possessing the advantages of low cost on both 

coding and computational expense, this approach can be feasibly 

grafted for solving optimization problems on thermal properties of other 

composites. 
59In another work by Wei et al. , machine learning methods including 

Support Vector Regression (SVR), Gaussian Process Regression (GPR) 

and Convoluted Neural Networks (CNN) were used to study the heat 

transfer in composite materials and porous media. SVR and GPR are 

non-linear regression methods that provides thermal conductivity 

classification with descriptors while CNN can handle much more 

descriptors with the given data. The difference is that EMT is based on 

physical understanding of the system while machine learning is based 

solely on data analysis. Wei et al. created a database using the quartet 

structure generation set (QSGS) to generate composite material 

structure and applying LBM to calculate the effective thermal 

conductivity. Then, this database is used to train and test the different 

machine learning methods. All three methods have shown good 

predictions as a fraction of the computational cost. CNN is the most 

comprehensive in being able to handle large datasets but it is only 

accurate if more expensive to training with larger datasets is given. This 

is in sharp contrast compared to SVR and GPR where smaller number 

of descriptors can provide reasonable correlation.  

c. Alloys – using High Entropy Alloys as a test case

A particularly interesting group of materials exhibiting exotic properties 

and ultra-low thermal conductivity is formed when mixing several 

elements on an atomic level with random occupation of each lattice site, 

i.e. solid solution. However, it is challenging to describe such materials 

from first principles. Since there is perfect disorder in which atom 

occupies which position, there is no longer a well-defined translational 

symmetry. A particularly interesting test-case of such multi-principal 

element alloys are high-entropy alloys (HEAs) when they are based on 

at least five different elements and constitute a single phase with solid 
60solution . Alloying is a well-known technique to reduce the thermal 

conductivity, and the HEA concept has therefore been used to minimize 

thermal conductivity in several studies, often with an emphasis to 

Fig. 4 Optimal size distribution of Ge nanoparticles for lowest thermal conductivity of Si Ge  composites. Heights of histogram bars indicate fraction of x 1-x

Ge allocated to each nanoparticle size. The best distribution introduces additional non-adjacent peaks as more Ge is added. Red histogram bars indicate 

point defects. 

61develop novel thermoelectric materials .

Several methods have been employed to describe HEAs on the 
62 10electronic scale , including the virtual crystal approximation (VCA) , 

63coherent potential approximation (CPA) , special quasi-random 
12, 64-68 69-structures (SQS) , and molecular dynamics (MD) based methods 

71. Only a few studies have assessed the thermal conductivity of HEAs, 
72, 73using semi-empirical MD . As mentioned above, the error involved 

in such methods may be quite high. This is particularly so for complex 

compounds with a large number of pair- and higher-order potentials. 

The studies only describe qualitative features of heat transport in 

generalized HEAs  and are thus not suited for HT investigations. The 

VCA method has been used to predict thermal conductivity of solid 

solution alloys. It is based on first principles and requires relatively 

expensive calculations of interatomic force constants within a phonon 

scheme. Nevertheless, interpolation of force constants makes this 

method rather efficient, and has been shown to reproduce experimental 

data relatively well in e.g. the entire ternary phase diagram of the solid 
74solution (Ti,Zr,Hf)NiSn system (Fig. 5a) . In order to obtain reliable 

and predictive results, however, the most applicable of the above 

methods to computing thermal transport appears to be the SQS 

construction. In this method, the atomic positions of a supercell of finite 

size are designed to ideally mimic the nuclear pair-correlation function 

of the solid solution. The larger the cell, the better the pair-correlation 

function can be approximated. The technique gives excellent results; 

128-atom supercells were recently found to reproduce very well the 

experimental thermal conductivity of the random alloy In Ga As using 1−x x
75SQS with a Green's function approach . It was shown in the same 

study that disorder of the interatomic force constants was necessary to 

obtain good correspondence with experiment, rendering the VCA 

approach significantly less accurate (Fig. 5b).

So far, no studies in the literature have to our knowledge predicted 

the calculated thermal conductivity of a HEA based on SQS at the DFT 

level. It can be anticipated that such studies will be available quite soon, 

and that they will form the basis of HT studies aiming at developing 

HEAs with extremely low thermal conductivity. Since these materials 

often come with other extraordinary properties, it can be expected that 

accelerated discoveries of novel HEAs will lead to materials with 
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unique combinations of thermal and other properties.

d. Interface thermal conductance – beyond the Acoustic and Diffuse 

Mismatch models
76Ever since Kapitza  discovered that a non-continuous temperature drop 

at the interface between helium and a solid, thermal boundary resistance 

has becomea  central problem to thermal material design. The thermal 

interface resistance between two materials is the ratio of the 

temperaturte discounity at the interface to the power per unit area 

flowing across the interface. The Acoustic Mismatch Model (AMM) 
77, 78and the Diffuse Mismatch Model (DMM)  provide the upper and 

lower bounds for such an estimate, assuming no scatter for the former 

and complete diffuse scattering for the latter. Such models have been 

accurate for solid-solid interface and provided significant insight into 

the mechanics of phonon transport at the interface – the group velocity 

of the phonons and the overlap of the phonon density of states being 

two key physical descriptors that are responsible for how heat flows at 

an interface.  However, it is not accurate for describing interfaces with 
78real defects and roughness . A significant advancement was made due 

to full calculations of the phonon density of states and integrating over 

this in the Boltzmann transport simulations or Green-Kubo (numerical 
79or analytical integration techniques)  allows for the description of 

frequency dependent interfacial conductance. However, such methods 

can lead to a loss of accuracy by discounting effects such as intermixing 

at the interfaces, roughness effects and electron-phonon coupling, and 

not properly accounting for the finite size effects of the simulation 
80domain . While lots of work have shown the limited validity of AMM 

81, 82 83, 84and DMM  and new models have been proposed , ML methods 

can certainly bridge this gap in knowledge, by identifying the key 

physical attributes necessary to accurately predict the thermal interface 

properties.

Two recent works have utilized ML methods to understand 
85interfacial thermal resistance. The work by Juni Shiomi's group  

explored the use of Bayesian optimization for computing interfacial 

thermal conductance (ITC) of super lattice structures consisting of Si 

Fig. 5 The phonon part of the thermal conductivity calculated with DFT employing semiclassical Boltzmann transport equations. (a) Ti Zr Hf NiSn at x y 1−x−y

300 K using the virtual crystal approximation (VCA). The bottom right corner corresponds to TiNiSn, the top to ZrNiSn, and the bottom left to HfNiSn. 

(b) In Ga As at 300 K using VCA (solid line based on the local density approximation (LDA) and dashed line based on the PBEsol generalized 1−x x

gradient approximation) and the special quasi-random structure (SQS) technique (red and blue dots based on LDA with 128- and 250-atom supercells, 
74, 75black dot based on PBEsol). Experimental results are shown with the open symbols. Picture taken from Refs. . Printed with permission from …

and Ge (Fig. 6a). ITC can be minimized or maximized by combining 

Atomistic Green's Function (AGF) with Bayesian Optimization just by 

calculating only a few percent of all possible structures, leading to 

considerable saving in computational resources. It is also found that 

aperiodic structures can minimize ITC more due to a lack of phonon 
86coherence. The recent work by Yibin Xu's group  utilizes online and 

published data with the acoustic mismatch model and diffuse mismatch 

model. Using regression methods including SVR, GVR, accurate 

prediction of interfacial thermal resistance has been achieved. It is 

found that AMM and DMM are not good descriptors while melting 

point and heat capacity are good descriptors (Fig. 6b). At the same time, 

ML and NN have recently been employed to study interfacial thermal 
87resistance between graphene and hexagonal boron nitride . 

Experiments
While HT predictions of k through ML have been explored, 

experimental efforts to realize this realm have been lacking. In 

principle, techniques such as time domain thermoreflectance (TDTR) 

are perfectly suited for fast, non-destructive testing of thermal 
88properties . Implemented with sophisticated modeling based on the 

approaches described above, these high throughput experimental tools 

can ascertain the thermal conductivity, specific heat (extracted from the 

thermal diffusivity), interface thermal conductance as well as anisotropic 

thermal properties.  Going beyond, because of the depth of knowledge 

developed by the community in this regard, the intrinsic transport 

descriptors such as the dominant phonon wavelengths participating in 

thermal transport, scattering times, mean free path accumulation 

functions and more have also been gleaned out. Combined with high-
89, 90throughput materials synthesis techniques  both in the solid solution 

and combinatorial thin film form, there is a huge opportunity here 

where such HT experimental techniques can provide high-fidelity data 

that will not only provide insight on what dictates thermal transport, but 

also provide a database that can serve as a test-set for ML algorithms.  

Similar approaches have already proven successful for small molecules 
91, 92and proteins  and the need-of-the-hour is to leverage build upon fast 
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experimental characterization tools to create a thermal material property 

library. For example, measuring the in-plane and cross-plane thermal 

conductivities of a material grown by combinatorial synthesis could go 

a long way towards designing new thermal materials. The work by 

David Cahill's Group leverages upon time domain thermoreflectance to 
88,93measure k experimentally for nickel solid solutions . Such HT 

94techniques have already been being developed for chemistry , solar cell 
90 95materials   and batteries .

Sophisticated tools such as Bayesian inference is able to use a 

forward model (similar to the Boltzmann Transport Equation) in order 

to extract hidden materials and transport properties simultaneously. 

Here, by looking at a system-level model in a PV cell, the authors were 

able to extract the bulk and interface properties that are limiting it's 
38performance . Similar new hardware approaches can also be developed 

for thermoelectrics. One can envision utilizing such ML algorithms 

coupled with advanced statistical analysis to provide experimental tools 

(for example extending the theoretical models used with TDTR) to 

provide fast screening for measurement of thermal properties of a large 

class of compounds.  Large scale synthesis of bulk and thin film 

materials with varying stoichiometry and physical properties is an 

outstanding challenge that will impact not just the thermal community 

but other fields of materials science as well.  In addition, a clear and 

present opportunity is to leverage upon existing theoretical databases 

and integrating them into a common language that is widely available to 

the researchers working in this area.  This will enable an artful 

application of ML to sparse, but high-quality datasets (experimentally 

generated, but amplified by theoretical calculations).  The general 

approach here is to provide high-throughput experimental data 

embellished by fast theoretical predictions, while high-fidelity careful 

measurements can subsequently be performed after this initial screening 

process.  Since little work has been performed in this area, there is a 

vast space for discovery of new materials with novel thermal properties 

and exhibiting new physics; for example, moving beyond the classical 

size effects and scattering of phonons as particles, towards wave and 
96coherent effects . Such high-throughput synthesis and thermal 

characterization will also enable the development of holistic 

understanding of thermal properties on material classes, bonding, alloys, 

microstructures, defects (both from understanding and moving towards 

engineering).

Conclusions and Outlook
Thanks to the establishment of materials database frameworks for and 

the rapid development on both computational hardware and algorithms 

for machine learning, successful pioneer works have emerged in this 

interdisciplinary field of data science and materials discovery for 

thermal applications. While algorithms for data processing and ML have 

become increasing sophisticated, high-quality datasets particularly 

suitable for thermal properties are still difficult to obtain. This is largely 

due to the high computational cost involved in computing various 

thermal properties from physical models and first-principles.  Therefore, 

high-throughput methodology and freamework have been one of the 

most important approaches, which can settle the bottleneck of data 

deficiency. What is also challenging is our lack of understanding on the 

correlation of material descriptors with transport properties. ML has 

provided us new insights into correlations that were not physically 

intuitive, offering us insights into future material discoveries for thermal 

science. Overall, the coupling of theoretical and experimental HT 

techniques would become key for the development of this field, 

liberating us from the repetitive work of parameter sweeps and 

measurements towards new physics and new materials. 
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