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Abstract: In non-Hermitian systems with the Hamiltonians obeying parity-time (PT) 14 

symmetry, exploring the counterintuitive physics induced by degeneracies known as 15 

exceptional points (EPs) provides unprecedented ways to control energy flow. Recently, 16 

there are growing interests in bridging wave systems and diffusive systems, where anti-17 

parity-time (APT) symmetry is demonstrated in diffusive systems. In this work, we start 18 

from the thermal energy transfer in a four-channel coupling model with the background 19 
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flow velocities in adjacent channels opposite. A third order EP exists in this system, 20 

where temperature profiles in the moving channels are static in the APT symmetric 21 

phase (flow velocities below a threshold 𝑣EP  at the EP), and the profiles begin to 22 

dynamically evolve in the APT broken phase (>𝑣EP ). yy introducing a velocity 23 

perturbation into the background flow at the third order EP (𝑣EP ± ∆𝑣), we find APT 24 

symmetry keeps robust with the phases of temperature profiles in adjacent channels 25 

relatively static or locked. When ∆𝑣 is increased above a threshold (another EP), the 26 

APT symmetry is breaking with a transition from phase locking to phase oscillation, 27 

regardless of initial conditions. This work unveils rich physics in convectively coupled 28 

diffusive systems and offers us new prospects for the control of complex thermal fields. 29 

 30 

Keywords: Anti-parity-time symmetry; Exceptional point; Phase transition; Heat 31 

transfer. 32 

 33 

1. Introduction 34 

Parity-time (PT) symmetry is attractive in quantum mechanics, since it allows for 35 

real eigenvalues in the non-Hermitian Hamiltonians that are associated with observable 36 

quantities in physical systems.1 For a physical system, the parity operator 𝑃̂ and time 37 

reversal operator 𝑇̂ acts based on the rules of 𝑃̂𝜓(𝑥) = 𝜓(−𝑥) and 𝑇̂𝜓(𝑥) = 𝜓∗(𝑥), 38 

respectively, where ∗  denotes the complex conjugate.2 However, in PT symmetric 39 

systems, real eigenvalue is a conditional but not necessary result, since there exist phase 40 
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transition points at which the PT symmetry will be spontaneously breaking and the 41 

eigenvalues become complex. Such phase transition points are termed as exceptional 42 

points (EPs), where eigenmodes are degenerate with both eigenvalues and eigenvectors 43 

coalesced.3,4 Here, EPs are completely different from diabolic points in the parameter 44 

spaces of Hermitian systems at which the eigenvectors are orthogonal.5,6 In the past two 45 

decades, the paradigm of PT symmetry in quantum mechanics has been successfully 46 

shifted into classical systems.7-13 For example, in optics and acoustics, the PT symmetry 47 

is constructed by introducing anti-symmetrically distributed gain and loss materials. 48 

New perspectives are envisioned in the PT symmetric platform, where various 49 

counterintuitive effects are theorectically proposed and experimentally demonstrated, 50 

such as unidirectional transparency,7,8 one-way cloaking,9,10 mode switching,11,12 EP 51 

sensing,13,14 coherent lasing and absorption.15,16 52 

Recently, it was found that EPs also exist in anti-parity-time (APT) symmetric 53 

systems, at which phase transition occurs with the eigenvalues changing from pure 54 

imaginary (APT symmetric phase) into complex (APT broken phase).17,18 Unlike the 55 

PT symmetric Hamiltonian that satisfies the relation 𝑃̂𝑇̂𝐻 = 𝐻𝑃̂𝑇̂, the APT symmetric 56 

Hamiltonian follows the rule of 𝑃̂𝑇̂𝐻 = −𝐻𝑃̂𝑇̂.19,20 Mathematically, the PT symmetric 57 

Hamiltonian can be transformed into the APT symmetric one by simply multiplying the 58 

Hamiltonian with an imaginary number i. Physically, for a tight-binding model, this 59 

operation will end up with a pure virtual coupling between two tight-binding sites, 60 

which is quite challenging for the practical implementation. In optics, the virtual 61 
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coupling between adjacent meta-atoms is realized in an indirect and complicated way 62 

by adding a well-designed third meta-atom in-between to equivalently generate a virtual 63 

coupling action.19,21 It needs to be mentioned that the diffusive systems (e.g., thermal 64 

systems) are inherently non-Hermitian. The most interesting is the notion that the 65 

coupling in diffusive systems is originally imaginary. Thus, with the aid of convection 66 

and low diffusivity, we can imitate various wave-like dynamics in the framework of 67 

diffusive systems.22 For example, the stable temperature profile under low diffusivity, 68 

which mimics a wave packet, can stop or even move in the opposite direction against 69 

the background flow via convection couplings, corresponding to zero or negative group 70 

velocity of a wave packet.  71 

In this work, we explore the phase transition in a four-channel coupling thermal 72 

system, which, compared with the two-channel toy model,22 provides a higher degree 73 

of freedom to control energy flow. When the background flow velocities in neighboring 74 

channels are opposite, there exists a third order EP in the eigenspectrum, accompanied 75 

with APT symmetry breaking. Adding a perturbation into the background flow velocity 76 

at the high order EP (𝑣EP ± ∆𝑣), the APT symmetry remains robust, where the phases 77 

of temperature profiles in adjacent moving channels are relatively static, as manifested 78 

in a locked mode. When the perturbation ∆𝑣 surpasses a threshold (another EP), the 79 

whole system will transit into the broken APT symmetry. In this case, we observe the 80 

effect of robust phase oscillation that is irrelevant to the initial conditions, induced by 81 

the concealing dimension in the high order EP. Just as the transformation thermotics 82 
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that rapidly developed together with the transformation optics and acoustics,23-26 APT 83 

phase transition at EPs in diffusive systems, inspired from the PT phase transition in 84 

classical wave systems, will promisingly expand the vision of counterintuitive thermal 85 

flow regulation. 86 

2. Model and theory 87 

Figures 1(a) and 1(b) show the schematics of 3D model and the corresponding 2D 88 

model, respectively. The four identical ring-shaped channels are stacked along z-axis, 89 

where the thickness, inner radius and outer radius of each channel are b, 𝑅1 and 𝑅2, 90 

respectively. Adjacent channels are coupled through an oil layer with the thickness d. 91 

Rotation velocities of the background flow in the four channels are set to be 𝛺1,3 =92 

𝑣/𝑅1 and 𝛺2,4 = −𝑣/𝑅1, respectively, given that 𝑅1 ≈ 𝑅2. 93 

 94 
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Fig. 1 (a), (b) The schematic of 3D model and the corresponding 2D model. Here, the channel width 95 

is b. The thickness of oil layers is 𝑑. The inner radius of the ring-shaped channel is 𝑅1. The outer 96 

radius is 𝑅2. The velocities of background flows in adjacent channels are 𝛺 = ±𝑣/𝑅1. (c) The 97 

imaginary part and real part of eigenvalues vs. the background flow velocity. Red dots at A and B 98 

mark the EPs. 99 

 100 

Diffusive systems are dissipative with energy exchanges to the environment, which 101 

can be regarded as inherently non-Hermitian systems. In stark contrast with wave 102 

systems that are governed by the real and Hermitian Hamiltonians, diffusive systems 103 

are featured with pure imaginary Hamiltonians. Recently, great efforts have been made 104 

to marry the two different scenarios, where the introduced background flow velocity in 105 

the convection process can serve as the effective group velocity for directional energy 106 

flows, on condition that the thermal diffusivity of materials is trivial. In this case, the 107 

Hamiltonians of diffusion systems become complex, with the APT symmetry possibly 108 

constructed and EPs generated. For the model displayed in Fig. 1, the convection-109 

diffusion equations describing the temperature field evolutions take the forms of  110 

𝜕𝑇1

𝜕𝑡
= 𝐷

𝜕2𝑇1

𝜕𝑥2
+ 𝑣

𝜕𝑇1

𝜕𝑥
+

ℎ𝑆1

𝜌r𝐶r
; ℎ𝑠1 =

𝜅o

𝑏𝑑
(𝑇2 − 𝑇1), 111 

𝜕𝑇2

𝜕𝑡
= 𝐷

𝜕2𝑇2

𝜕𝑥2
− 𝑣

𝜕𝑇2

𝜕𝑥
+

ℎ𝑆2

𝜌r𝐶r
; ℎ𝑠2 =

𝜅o

𝑏𝑑
(𝑇1 + 𝑇3 − 2𝑇2), 112 

𝜕𝑇3

𝜕𝑡
= 𝐷

𝜕2𝑇3

𝜕𝑥2
+ 𝑣

𝜕𝑇3

𝜕𝑥
+

ℎ𝑆3

𝜌r𝐶r
; ℎ𝑆3 =

𝜅o

𝑏𝑑
(𝑇2 + 𝑇4 − 2𝑇3), 113 

𝜕𝑇4

𝜕𝑡
= 𝐷

𝜕2𝑇4

𝜕𝑥2
− 𝑣

𝜕𝑇4

𝜕𝑥
+

ℎ𝑆4

𝜌r𝐶r
; ℎ𝑆4 =

𝜅o

𝑏𝑑
(𝑇3 − 𝑇4),                        (1) 114 

where 𝑇1,2,3,4 are the temperature profiles in channels 1, 2, 3, 4. 𝜌r and 𝐶r are the 115 
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mass density and heat capacity of the ring materials, respectively. In Eq. (1), 𝐷 =116 

𝜅r 𝜌r𝐶r⁄  is the thermal diffusivity of the ring materials, with 𝜅r denoting the thermal 117 

conductivity. For the coupling oil layers, ℎ𝑠1,𝑠2,𝑠3,𝑠4  and 𝜅o  represent the coupling 118 

strengths between adjacent channels and the thermal conductivity of oil, respectively. 119 

Equation (1) is based on the continuity of temperature fields on the boundaries of 120 

oil layers. For simplicity, we first consider the thermal flow in a slowly rotating ring 121 

with trivial diffusivity 𝐷 → 0 . The convection-diffusion equation is expressed into 122 

∂𝑇

∂𝑡
= 𝐷

∂2𝑇

∂𝑥2
+ 𝑣

∂𝑇

∂𝑥
. Since the diffusion term is a perturbation compared to the advection 123 

term, the convection-diffusion equation can be reduced into a homogeneous form 
∂𝑇

∂𝑡
=124 

𝑣
∂𝑇

∂𝑥
, which has a wave form solution 𝑇(𝑥, 𝑡) = 𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡). Substituting the wave form 125 

solution back into the inhomogeneous convection-diffusion equation, we will end up 126 

with 𝜔 = −𝑖𝑘2𝐷 + 𝑘𝑣. In poor thermal conducting materials, the initial temperature 127 

field profile keeps unchanged during the rotation. After one circle, the field coincides, 128 

where we define the perimeter 𝐿 = 2𝜋𝑅1 as the periodic wavelength of the circulating 129 

energy packets. Straightforwardly, the wave number 𝑘 in the wave form solution can 130 

be defined as 𝑘 = 2𝜋 𝐿⁄ = 1 𝑅1⁄  . Equation (1) actually takes a similar form to the 131 

time-independent Schrödinger equation 𝐻𝜓(𝑥) = 𝐸𝜓(𝑥), where the Hamiltonian is 132 

𝐻0 = (

𝑆0 − 𝑘𝑣 𝑖ℎ 0 0
𝑖ℎ 𝑆0 − 𝑖ℎ + 𝑘𝑣 𝑖ℎ 0
0 𝑖ℎ 𝑆0 − 𝑖ℎ − 𝑘𝑣 𝑖ℎ
0 0 𝑖ℎ 𝑆0 + 𝑘𝑣

),                 (2)  133 

with 𝑆0 = −𝑖(𝑘2𝐷 + ℎ) and ℎ = 𝜅o 𝜌r𝐶r𝑏𝑑⁄ . After some derivations, eigenvalues of 134 

the Hamiltonian in Eq. (2) are solved by 135 
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𝜔±1 = −𝑖 [𝑘2𝐷 + ℎ ± √ℎ2 − (𝑘𝑣)2] ,

𝜔±2 = −𝑖 [𝑘2𝐷 + 2ℎ ± √2ℎ2 − (𝑘𝑣)2].                                 (3)
  136 

In Eq. (3), the imaginary part of eigenvalues is mainly determined by the coupling 137 

strength h, which characterizes the decay rate of thermal energy. The eigenvalues will 138 

turn into complex ones, on condition that the effect of convection outweighs the 139 

coupling action. As shown by Eq. (3), 𝜔±1  and 𝜔±2  are complex with real and 140 

imaginary parts, when ℎ < 𝑘𝑣  and √2ℎ < 𝑘𝑣 , respectively. Eigenvectors of the 141 

Hamiltonian corresponding to 𝜔±1 and 𝜔±2 are derived to be 142 

𝑢±1(𝑘) = (
−

−ℎ2+2𝑘2𝑣2±2𝑖𝑘𝑣√ℎ2−𝑘2𝑣2

ℎ2 , −
−𝑖𝑘𝑣±√ℎ2−𝑘2𝑣2

ℎ
,

−
−𝑖𝑘𝑣±√ℎ2−𝑘2𝑣2

ℎ
, 1

)

𝑇

,

𝑢±2(𝑘) = (−1,
ℎ+𝑖𝑘𝑣±√2ℎ2−𝑘2𝑣2

ℎ
,
−ℎ+𝑖𝑘𝑣∓√2ℎ2−𝑘2𝑣2

ℎ
, 1)

𝑇

.                    (4)

  143 

 Figure 1(c) shows the relation between the eigenvalues and the flow velocity. In 144 

the calculation, we set 𝑅1 = 0.1 m , 𝑅2 = 0.11 m , 𝑑 = 5 mm , 𝑏 = 1 mm , 𝜅r =145 

100 W/(m · K) , 𝜅o = 1 W/(m · K) , 𝜌r = 𝜌o = 1000 kg/m3  and 𝐶r = 𝐶o =146 

1000 J/(kg · K) . Thus we have 𝑘 = 1 𝑅1⁄ = 10 m−1 , ℎ =
𝜅o

𝜌r𝐶r𝑏𝑑
= 0.2 s−1  and 147 

𝐷 = 𝜅r 𝜌r𝐶r⁄ = 10−4 m2/s . In Fig. 1(c), there exist two EPs in the spectrum, as 148 

marked by the red dots A and B. From Eqs. (3) and (4), we obtain that the degenerated 149 

point A at 𝑣 = ℎ 𝑘⁄   is a third order EP with the eigenvalues being 𝜔±1,−2 =150 

−𝑖(𝑘2𝐷 + ℎ)  and 𝜔+2 = −𝑖(𝑘2𝐷 + 3ℎ) . The corresponding eigenvectors are 151 

𝑢±1,−2 = (−1, 𝑖, 𝑖, 1)𝑇  and 𝑢+2 = (−1,2 + 𝑖, −2 + 𝑖, 1)𝑇 , respectively. The 152 

degenerated point B at 𝑣 = √2ℎ 𝑘⁄  is a typical two order EP with the eigenvalues 153 

𝜔±1 = −𝑖(𝑘2𝐷 + ℎ) ± ℎ  and 𝜔±2 = −𝑖(𝑘2𝐷 + 2ℎ) . The eigenvectors are 𝑢±1 =154 
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[−3 ± 2√2, 𝑖(∓1 + √2), 𝑖(∓1 + √2)),1]
𝑇
  and 𝑢±2 = [−1,1 + 𝑖√2,−1 + 𝑖√2, 1]

𝑇
 . 155 

Here, it should be mentioned that the observed field evolution in diffusive systems 156 

eventually follows the minimum loss route, where the high-loss eigenfields will damp 157 

rapidly. As a result, in Fig. 1(c), the whole system would take the branch of 𝜔−1, as 158 

marked by the brown lines. Therefore, as the flow velocity increases, the system will 159 

only experience the third order EP at 𝑣EP = ℎ 𝑘⁄ = 2 cm/s, where the APT breaking 160 

phase transition occurs. Here we emphasized that the originally degenerated real parts 161 

of eigenvalues split into the upper and lower branches after the EPs, where we take the 162 

lower branch as 𝜔−1,−2 for consistency, as shown in Fig. 1(c) and the following. 163 

 164 

3. Results and discussion 165 

When the eigenvectors 𝑢 satisfy 𝑃̂𝑇̂𝑢 = ±𝑢, the whole system operates in the 166 

PT/APT symmetric phase and will reach a steady state over time under the PT/APT 167 

symmetry protection.22 When 𝑃̂𝑇̂𝑢 ≠ ±𝑢 , the system is operating in the PT/APT 168 

broken phase with unstable eigenstates. 169 

3.1 Phase transition at the high order EP 170 

From the Eq. (3), for 𝑣 < 𝑣EP , all eigenvalues are pure imaginary. Substituting 171 

𝜙 = arcsin(𝑣/𝑣
EP

) into Eq. (4), the eigenvectors can be further simplified into 172 

𝑢±1(𝑘) = (cos2𝜙 ∓ isin2𝜙,∓cos𝜙+isin𝜙,∓cos𝜙+isin𝜙, 1)𝑇 ,

𝑢±2(𝑘) = (−1, (1 ± √2 − sin𝜙2) + 𝑖sin𝜙,−(1 ± √2 − sin𝜙2) + 𝑖sin𝜙, 1)
𝑇
.   (5)

  173 

Combining the forward and backward wave form solutions, we will obtain expressions 174 

of eigenstates 𝑇 = [𝑇1, 𝑇2, 𝑇3, 𝑇4] = 𝑒−𝑖𝜔𝑡[𝑢(𝑘)𝑒𝑖𝑘𝑥 + 𝑢(−𝑘)𝑒−𝑖𝑘𝑥] , where 𝑇1,2,3,4 175 
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denote the steady temperature profiles in channels 1-4. All the possible eigenstates with 176 

eigenfields in the four channels are derived as follows 177 

𝑇+1 = 2𝑒−𝑖𝜔+1𝑡[cos(𝑘𝑥 − 2𝜙),−cos(𝑘𝑥 − 𝜙), −cos(𝑘𝑥 − 𝜙), cos𝑘𝑥],

𝑇−1 = 2𝑒−𝑖𝜔−1𝑡[cos(𝑘𝑥 + 2𝜙), cos(𝑘𝑥 + 𝜙), cos(𝑘𝑥 + 𝜙), cos𝑘𝑥],

𝑇+2 = 2𝑒−𝑖𝜔+2𝑡 [
−cos𝑘𝑥, (1 + √2 − sin2𝜙)cos𝑘𝑥 − sin𝜙sin𝑘𝑥,

−(1 + √2 − sin2𝜙)cos𝑘𝑥 − sin𝜙sin𝑘𝑥, cos𝑘𝑥
] ,

𝑇−2 = 2𝑒−𝑖𝜔−2𝑡 [
−cos𝑘𝑥, (1 − √2 − sin2𝜙)cos𝑘𝑥 − sin𝜙sin𝑘𝑥,

−(1 − √2 − sin2𝜙)cos𝑘𝑥 − sin𝜙sin𝑘𝑥, cos𝑘𝑥
].            (6)

  178 

Note that the whole system ends up with the minimum loss case of 𝑇−1 over time, 179 

showing that the steady-state temperature fields will stand still and phase differences 180 

between 𝑇1(𝑇4)  and 𝑇2(𝑇3)  are ±𝜙 = ±arcsin(𝑣/𝑣
EP

) . This claim is demonstrated 181 

from the full wave simulation results by using a finite element solver COMSOL 182 

Multiphysics® 5.3, as shown in Fig. 2(a), where the initial temperature fields in all 183 

channels are set by 𝑇1,2,3,4 = 293.15 + 100𝑦 (K). At 𝑣 = 𝑣EP, namely, the third order 184 

transition point of eigenstates from APT symmetry to APT symmetry breaking, the 185 

temperature fields in each channel keep standing still and the phase difference between 186 

adjacent channels is π 2⁄ . To be specific, Fig. 2(b) shows the eigenfields distribution 187 

𝑇1,2,3,4 in the four eigenstates 𝑇±1,−2~ − 2[cos𝑘𝑥, sin𝑘𝑥, sin𝑘𝑥,−cos𝑘𝑥] and 𝑇+2~ −188 

2[cos𝑘𝑥,−√5cos(𝑘𝑥 + 𝜃 − π/2),√5cos(𝑘𝑥 − 𝜃 − π/2),−cos𝑘𝑥] (𝜃 = arctan1/2).  189 

For 𝑣 > 𝑣EP, the whole system transits into the APT breaking phase, where the 190 

evolution of temperature profiles becomes very complicated. Intuitively, the convection 191 

effect outperforms thermal coupling, making the system impossible to reach a steady 192 

state. Substituting 𝜓 = arccosh(𝑣 𝑣EP⁄ ) into Eq. (4) , we will derive the eigenstates 193 

as 194 
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𝑇+1 = 𝑒Im𝜔+1𝑡

[
 
 
 
 
−𝑒−2𝜓cos(𝑘𝑥 − Re(𝜔+1)𝑡) − 𝑒2𝜓cos(𝑘𝑥 + Re(𝜔+1)𝑡),

𝑒−𝜓cos(𝑘𝑥 − Re(𝜔+1)𝑡) + 𝑒𝜓cos(𝑘𝑥 + Re(𝜔+1)𝑡),

𝑒−𝜓cos(𝑘𝑥 − Re(𝜔+1)𝑡) + 𝑒𝜓cos(𝑘𝑥 + Re(𝜔+1)𝑡),

cos(𝑘𝑥 − Re(𝜔+1)𝑡) + cos(𝑘𝑥 + Re(𝜔+1)𝑡) ]
 
 
 
 
𝑇

, 195 

𝑇−1 = 𝑒Im𝜔−1𝑡

[
 
 
 
 
−𝑒2𝜓cos(𝑘𝑥 − Re(𝜔−1)𝑡) − 𝑒−2𝜓cos(𝑘𝑥 + Re(𝜔−1)𝑡),

𝑒𝜓cos(𝑘𝑥 − Re(𝜔−1)𝑡) + 𝑒−𝜓cos(𝑘𝑥 + Re(𝜔−1)𝑡),

𝑒𝜓cos(𝑘𝑥 − Re(𝜔−1)𝑡) + 𝑒−𝜓cos(𝑘𝑥 + Re(𝜔−1)𝑡),

cos(𝑘𝑥 − Re(𝜔−1)𝑡) + cos(𝑘𝑥 + Re(𝜔−1)𝑡) ]
 
 
 
 
𝑇

, 196 

𝑇+2 = 𝑒Im𝜔+2𝑡

[
 
 
 

−cos(𝑘𝑥 − Re(𝜔+2)𝑡) − cos(𝑘𝑥 + Re(𝜔+2)𝑡),

cos(𝑘𝑥 + 𝜃1 − Re(𝜔+2)𝑡) − cos(𝑘𝑥 + 𝜃1 + Re(𝜔+2)𝑡),

−cos(𝑘𝑥 − 𝜃1 − Re(𝜔+2)𝑡) − cos(𝑘𝑥 − 𝜃1 + Re(𝜔+2)𝑡),

cos(𝑘𝑥 − Re(𝜔+2)𝑡) + cos(𝑘𝑥 + Re(𝜔+2)𝑡) ]
 
 
 
𝑇

, 197 

     (tan𝜃1 =
cosh𝜓

1+√2−cosh2𝜓
),                     198 

𝑇−2 = 𝑒Im𝜔−2𝑡

[
 
 
 

−cos(𝑘𝑥 − Re(𝜔−2)𝑡) − cos(𝑘𝑥 + Re(𝜔−2)𝑡),

cos(𝑘𝑥 + 𝜃2 − Re(𝜔−2)𝑡) − cos(𝑘𝑥 + 𝜃2 + Re(𝜔−2)𝑡),

−cos(𝑘𝑥 − 𝜃2 − Re(𝜔−2)𝑡) − cos(𝑘𝑥 − 𝜃2 − Re(𝜔−2)𝑡),

cos(𝑘𝑥 − Re(𝜔−2)𝑡) + cos(𝑘𝑥 + Re(𝜔−2)𝑡) ]
 
 
 
𝑇

,  199 

(tan𝜃2 =
cosh𝜓

1−√2−cosh2𝜓
).                                         (7)                                        200 

In inspection of Eq. (7), the amplitudes of forward and backward wave form 201 

components in the eigenstate 𝑇−1  are 𝐴−1,1 = −𝑒2𝜓 , 𝐵−1,1 = −𝑒−2𝜓 , 𝐴−1,2 = 𝑒𝜓 , 202 

𝐵−1,2 = 𝑒−𝜓 , 𝐴−1,3 = 𝑒𝜓 , 𝐵−1,3 = 𝑒−𝜓  and 𝐴−1,4 = 𝐵−1,4 = 1 . Obviously, the 203 

temperature fields 𝑇1,2,3,4 are unstable over time evolution. Here we utilize the local 204 

maximum to trace the position (or phase) of temperature fields in each channel. From 205 

∂𝑇𝑗 ∂⁄ 𝑥 = 0 and Eq. (7), we will obtain the relation tan𝑘𝑥𝑗 = tan[Re(𝜔)𝑡](𝐴−1,𝑗 −206 

𝐵−1,𝑗 ) (⁄ 𝐴−1,𝑗 + 𝐵−1,𝑗) . Define the phase difference between channels 1 and 2 as 207 

𝜑1 − 𝜑2 = 𝑘(𝑥1 − 𝑥2). Considering tan𝑘(𝑥1 − 𝑥2) =
tan𝑘𝑥1−tan𝑘𝑥2

1+tan𝑘𝑥1⋅tan𝑘𝑥2
, we have 208 

𝜑1 − 𝜑2 = arctan
𝑆1tan[Re(𝜔)𝑡]

1 + 𝑆2tan2[Re(𝜔)𝑡]
,                                 (8) 209 

where 𝑆1 =
𝐴−1,1−𝐵−1,1

𝐴−1,1+𝐵−1,1
−

𝐴−1,2−𝐵−1,2

𝐴−1,2+𝐵−1,2
, 𝑆2 =

𝐴−1,1−𝐵−1,1

𝐴−1,1+𝐵−1,1
⋅

𝐴−1,2−𝐵−1,2

𝐴−1,2+𝐵−1,2
. Figures 2(c) and 2(d) 210 

show the theoretical calculation and numerical simulation of the phase difference 𝜑1 −211 
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𝜑2 over time evolution, respectively. The results unequivocally reveal that the phase 212 

difference 𝜑1 − 𝜑2 keeps increasing and will never reach a steady state on condition 213 

that APT symmetry is breaking. 214 

 215 

Fig. 2 APT symmetry breaking at the high order EP in the four-channel diffusive system. (a) The 216 

time evolution of phase differences 𝜑1 − 𝜑2 and 𝜑4 − 𝜑
3
 vs. the flow velocity 𝑣, where we set 217 

𝑣n = 𝑣EP sin (
𝑛𝜋

18
) , (𝑛 = 1,2,… ,9). (b) The eigenstates 𝑇±1 and 𝑇±2 at the EP. In (a) and (b), 218 

𝑇1,2,3,4 and 𝜑1,2,3,4 denote the steady temperature profiles and the related phases in channels 1-4. 219 

(c), (d) Theory and simulation results of time evolution of 𝜑1 − 𝜑2 at 𝑣 = 2√2 cm/s, when the 220 

APT symmetry is broken. 221 

 222 

 223 
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3.2 Perturbation at the high order EP 224 

In this section, we explore the case that a perturbation is introduced to the high 225 

order EP. Here we introduce a flow velocity modulation ±∆𝑣 into the four-channel 226 

system, as schematically shown in Fig. 3(a). In this case, the Hamiltonian containing 227 

the perturbation is rewritten as follows 228 

𝐻1 =

(

 

𝑆0 − (𝑘𝑣EP − 𝛥𝑣) 𝑖ℎ 0 0

𝑖ℎ 𝑆0 − 𝑖ℎ + (𝑘𝑣EP + 𝛥𝑣) 𝑖ℎ 0

0 𝑖ℎ 𝑆0 − 𝑖ℎ − (𝑘𝑣EP + 𝛥𝑣) 𝑖ℎ

0 0 𝑖ℎ 𝑆0 + (𝑘𝑣EP − 𝛥𝑣))

 . 229 

                                                                  (9) 230 

The imaginary part and the real part of the Hamiltonian are shown in Figs. 3(b) 231 

and 3(c). The result shows that as the modulation strength ∆𝑣 increases from 0 cm s⁄ , 232 

there exist three EPs. One is the third order EP 𝐀′ at ∆𝑣 = 0 cm s⁄ , while the typical 233 

two order EPs 𝐁′  and 𝐂′  locate at ∆𝑣 = 0.57 cm s⁄   and ∆𝑣 = 1.6 cm s⁄  . As we 234 

mentioned before, the diffusive system is always following the lowest dissipation state 235 

over time. Therefore, the eigenvalue of the Hamiltonian takes the brown branch in Figs. 236 

3(b) and 3(c). The results show that the APT symmetry is robust against the weak 237 

perturbation at the high order EP. When the perturbation strength is above the threshold 238 

∆𝑣 = 1.6 cm s⁄ , the whole system will transit into APT symmetry breaking across the 239 

EP 𝐂′  and the temperature fields become unstable. Figure 3(d) displays the time 240 

evolution of phase difference 𝜑1 − 𝜑2  at different modulation strengths, where the 241 

APT is symmetric. In Fig. 3(d), we find that the phases of steady-state temperature 242 

profiles in adjacent circulating channels are relatively static (𝑡 > 60 s), as manifested 243 
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in a locked mode with a nearly constant phase difference. To be specific, the phase 244 

differences of three locked modes (in degrees) are 55° for ∆𝑣 = 0.5 cm s⁄ , 41.2° for 245 

∆𝑣 = 1 cm s⁄ , and 25.6° for ∆𝑣 = 1.5 cm s⁄ , respectively. 246 

 247 

Fig. 3 Perturbation at the high order EP. (a) The schematic of flow velocity modulation in the four 248 

channels. (b), (c) The imaginary part and real part of eigenvalues vs. the flow velocity modulation 249 

∆𝑣, with the brown lines denoting the scenario of the lowest energy dissipation. Red dots at 𝐀′, 𝐁′, 250 

and 𝐂′ mark the EPs. (d) The phase difference 𝜑1 − 𝜑2 between channels 1 and 2 over time 251 

evolution in APT symmetry, where ∆𝑣 = 0.5 cm/s, 1.0 cm/s, 1.5 cm/s. 252 

 253 

As aforementioned, the temperature fields in diffusive systems are unstable in the 254 

APT broken phase. Here we show that by introducing flow velocity modulation at the 255 
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high order EP, the phase difference between adjacent channels will oscillate over time 256 

instead of continuously diverging at APT breaking. In addition, the phase oscillation at 257 

APT breaking is independent with the initial condition. In Figs. 4(a)-4(c), we present a 258 

numerical demonstration of the phase oscillation effect at APT breaking with three 259 

different initial conditions. Specifically, in Fig. 4(a), the temperature profile at 𝑡 = 0 s 260 

is 𝑇1,3 = 293.15 + 100𝑥 (K)  and 𝑇2,4 = 293.15 + 100𝑦 (K) , with 𝜑1 − 𝜑2 =261 

−90° . In Fig. 4(b), the temperature profile at 𝑡 = 0 s  is 𝑇1,2,3,4 = 293.15 +262 

100𝑦 (K) , with 𝜑1 − 𝜑2 = 0° . In Fig. 4(c), the temperature profile at 𝑡 = 0 s  is 263 

293.15 − 100𝑥 (K)  and 𝑇2,4 = 293.15 + 100𝑦 (K) , with 𝜑1 − 𝜑2 = 90° . Here 264 

the flow velocity modulation strength ∆𝑣 = 4 cm/s. The results reveal that for the 265 

three cases, phase oscillation occurs at 𝑡 > 40 s , with the oscillation center angle 266 

𝜑center = 45° and the time cycle 𝑇period = 32 s. In Figs. 4(a) - 4(c), the insets show 267 

the temperature profiles in channels 1 and 2 at different times when the phase difference 268 

𝜑1 − 𝜑2 takes maximum or minimum values, vividly displaying the relative periodic 269 

oscillation of phase difference over time. Figure 4(d) shows that both the oscillation 270 

center angle and the time cycle decrease as the flow velocity modulation strength 271 

increases. When the flow modulation strength ∆𝑣 is much larger than the EP velocity 272 

𝑣EP, for example ∆𝑣 = 40 cm/s, the flows in channels 1 and 2 can be regarded as 273 

almost synchronous circulation. Therefore, the phase oscillation is weak with the center 274 

angle close to 0 (𝜑center = 1.4°), while the time cycle of the phase jittering 𝑇period =275 

21.6 s. 276 
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 277 

Fig. 4 Periodic phase oscillation in APT symmetry breaking. (a), (b) and (c) Phase oscillation of 278 

𝜑1 − 𝜑2 at ∆𝑣 = 4 cm/s with the initial condition being 𝜑1 − 𝜑2 = −π/2, 0 and π/2 at 𝑡 =279 

0 s, respectively. (d) The oscillation center angles/time cycles vs. the flow velocity modulation ∆𝑣. 280 

  281 

At last, we would like to briefly discuss the cases of more channels coupled, odd-282 

number channels coupled and the suggestions for experiment. When more channels are 283 

coupled, we can basically obtain four-order EPs and beyond. In this case, the technical 284 

difficulty for experimental observation is increasing. Higher ordered EPs are intuitively 285 

associated with very complicated behaviors in phase evolution. However, the properties 286 

protected by APT symmetry are expected to be unchanged. For example, the phase 287 

differences of temperature profiles between adjacent channels for the steady states are 288 

locked in the APT symmetric case. Phase oscillation at APT symmetry breaking is also 289 
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supposed to occur when the higher ordered EP is perturbed with velocity modulation. 290 

In this work, we focus on the model of even-number coupled channels with inside flows 291 

having equal-but-opposite velocities. It will be interesting if an additional channel is 292 

introduced to break the symmetry of the whole system (i.e., odd-number channels). In 293 

light of the Hamiltonian analysis, there will exist an isolated branch with no conjugate 294 

pair in the eigenvalue spectrum, which does not degenerate with other paired branches. 295 

When the eigenmodes on the isolated branch have the minimum loss, the system will 296 

follow this single branch and do not experience EP-induced phase transition. For the 297 

experimental demonstration, we can use nylon rings (𝜅r < 2 W/(m ∙ K)) and grease 298 

(𝜅o ≈ 0.3 W/(m ∙ K)) as the channels and coupling layers, respectively. The flow 299 

velocity is implemented by rotating the rings with motors, where the rotation speed can 300 

be accurately controlled. The initial temperature fields are added to the rings through a 301 

copper plate with the ends immersing into the hot and cold water baths. Meanwhile, the 302 

copper plate is closely contacting with the rings.  303 

 304 

4. Conclusions 305 

In summary, we comprehensively investigate the phase evolution in a four-channel 306 

coupling-chain diffusive model. We show that a third order EP is generated in the 307 

eigenspectrum of the Hamiltonian for the four-channel toy model with the background 308 

flow velocities in adjacent channels being opposite. The high order EP is featured with 309 

APT phase transition. At the APT symmetry, we theoretically derive and numerically 310 
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verify the phase differences of the steady-state temperature profiles between adjacent 311 

channels, where the flow velocity is below the threshold 𝑣EP. The divergence of phase 312 

difference is also verified in the unstable diffusive system at APT symmetry breaking. 313 

More interesting is to introduce a perturbation into the background flow velocity at the 314 

high order EP. We find that the APT symmetry is robust against weak perturbation, 315 

where the system operates in a locked mode with the phase difference of moving 316 

temperature profiles in adjacent channels relatively unchanged. As the modulation is 317 

strengthened to surpass a threshold (another EP), the four-channel system will transit 318 

into the broken APT symmetry. In APT breaking, the phenomenon of robust phase 319 

oscillation is observed, which is irrelevant to the initial conditions. This work marries 320 

the two scenarios of diffusive systems and high order EP physics, which paves the way 321 

of counterintuitive thermal flow regulation via phase transition in coupling-chain 322 

diffusive systems. 323 
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