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Perturbation and Phase Oscillation at APT Symmetry Breaking

Peichao Cao,1 Ying Li,2* Yugui Peng,1 Chengwei Qiu2 and Xuefeng Zhu1*

Keywords: Anti-parity-time symmetry; Exceptional point; Phase transition; Heat transfer

Received 18 November 2019, Accepted 11 December 2019
DOI: 10.30919/esee8c365

In non-Hermitian systems with the Hamiltonians obeying parity-time (PT) symmetry, exploring the counterintuitive
physics induced by degeneracies known as exceptional points (EPs) provides unprecedented ways to control energy
flow. Recently, there are growing interests in bridging wave systems and diffusive systems, where anti-parity-time
(APT) symmetry is demonstrated in diffusive systems. In this work, we start from the thermal energy transfer in a
four-channel coupling model with the background flow velocities in adjacent channels opposite. A third order EP
exists in this system, where temperature profiles in the moving channels are static in the APT symmetric phase (flow
velocities below a threshold vEP at the EP), and the profiles begin to dynamically evolve in the APT broken phase (>
vEP). By introducing a velocity perturbation into the background flow at the third order EP (vEP ± ∆v), we find APT
symmetry keeps robust with the phases of temperature profiles in adjacent channels relatively static or locked. When
∆v is increased above a threshold (another EP), the APT symmetry is breaking with a transition from phase locking to
phase oscillation, regardless of initial conditions. This work unveils rich physics in convectively coupled diffusive
systems and offers us new prospects for the control of complex thermal fields.
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1. Introduction
Parity-time (PT) symmetry is attractive in quantum mechanics,
since it allows for real eigenvalues in the non-Hermitian
Hamiltonians that are associated with observable quantities in

physical systems.1 For a physical system, the parity operator P̂
and time reversal operator T̂ acts based on the rules of

P̂ψ ( x ) = ψ ( -x ) and T̂ψ ( x ) = ψ* ( x ), respectively, where *
denotes the complex conjugate.2 However, in PT symmetric
systems, real eigenvalue is a conditional but not necessary
result, since there exist phase transition points at which the PT
symmetry will be spontaneously breaking and the eigenvalues
become complex. Such phase transition points are termed as
exceptional points (EPs), where eigenmodes are degenerate
with both eigenvalues and eigenvectors coalesced.3,4 Here, EPs
are completely different from diabolic points in the parameter
spaces of Hermitian systems at which the eigenvectors are
orthogonal. 5,6 In the past two decades, the paradigm of PT

symmetry in quantum mechanics has been successfully shifted
into classical systems.7-13 For example, in optics and acoustics,
the PT symmetry is constructed by introducing anti-
symmetrically distributed gain and loss materials. New
perspectives are envisioned in the PT symmetric platform,
where various counterintuitive effects are theorectically
proposed and experimentally demonstrated, such as
unidirectional transparency, 7,8 one-way cloaking, 9,10 mode
switching,11,12 EP sensing,13,14 coherent lasing and absorption.15,16

Recently, it was found that EPs also exist in anti-parity-
time (APT) symmetric systems, at which phase transition
occurs with the eigenvalues changing from pure imaginary
(APT symmetric phase) into complex (APT broken phase).17,18

Unlike the PT symmetric Hamiltonian that satisfies P̂T̂H =
HP̂T̂, the APT symmetric Hamiltonian follows the rule of

P̂T̂H = -HP̂T̂. 19,20 Mathematically, the PT symmetric
Hamiltonian can be transformed into the APT symmetric one
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by simply multiplying the Hamiltonian with an imaginary
number i. Physically, for a tight-binding model, this operation
will end up with a pure virtual coupling between two tight-
binding sites, which is quite challenging for the practical
implementation. In optics, the virtual coupling between
adjacent meta-atoms is realized in an indirect and complicated
way by adding a well-designed third meta-atom in-between to
equivalently generate a virtual coupling action.19,21 It needs to
be mentioned that the diffusive systems (e.g., thermal systems)
are inherently non-Hermitian. The most interesting is the
notion that the coupling in diffusive systems is originally
imaginary. Thus, with the aid of convection and low diffusivity,
we can imitate various wave-like dynamics in the framework
of diffusive systems. 22 For example, the stable temperature
profile under low diffusivity, which mimics a wave packet, can
stop or even move in the opposite direction against the
background flow via convection couplings, corresponding to
zero or negative group velocity of a wave packet.

In this work, we explore the phase transition in a four-
channel coupling thermal system, which, compared with the
two-channel toy model, 22 provides a higher degree of
freedom to control energy flow. When the background flow
velocities in neighboring channels are opposite, there exists
a third order EP in the eigenspectrum, accompanied with
APT symmetry breaking. Adding a perturbation into the
background flow velocity at the high order EP (vEP ± ∆v),

the APT symmetry remains robust, where the phases of
temperature profiles in adjacent moving channels are
relatively static, as manifested in a locked mode. When the
perturbation ∆v surpasses a threshold (another EP), the
whole system will transit into the broken APT symmetry. In
this case, we observe the effect of robust phase oscillation
that is irrelevant to the initial conditions, induced by the
concealing dimension in the high order EP. Just as the
transformation thermotics that rapidly developed together
with the transformation optics and acoustics,23-26 APT phase
transition at EPs in diffusive systems, inspired from the PT
phase transition in classical wave systems, will promisingly
expand the vision of counterintuitive thermal flow
regulation.

2. Model and Ttheory
Figs. 1(a&b) show the schematics of 3D model and the
corresponding 2D model, respectively. The four identical ring-
shaped channels are stacked along z-axis, where the thickness,
inner radius and outer radius of each channel are b, R1 and R2,
respectively. Adjacent channels are coupled through an oil
layer with the thickness d. Rotation velocities of the
background flow in the four channels are set to be Ω1,3 =
v/R1 and Ω2,4 = -v/R1, respectively, given that R1 ≈ R2.

Diffusive systems are dissipative with energy
exchanges to the environment, which can be regarded as
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Fig. 1 (a), (b) The schematics of 3D model and the corresponding 2D model.
Here, the channel width is b. The thickness of oil layers is d. The inner radius
of the ring-shaped channel is R1. The outer radius is R2.The velocities of
background flows in adjacent channels are Ω = ±v/R1. (c) The imaginary part
and real part of eigenvalues vs. the background flow velocity. Red dots at A
and B mark the EPs.
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inherently non-Hermitian systems. In stark contrast with
wave systems that are governed by the real and Hermitian
Hamiltonians, diffusive systems are featured with pure
imaginary Hamiltonians. Recently, great efforts have been
made to marry the two different scenarios, where the
introduced background flow velocity in the convection
process can serve as the effective group velocity for
directional energy flows, on condition that the thermal
diffusivity of materials is trivial. In this case, the
Hamiltonians of diffusion systems become complex, with
the APT symmetry possibly constructed and EPs generated.
For the model displayed in Fig. 1, the convection-diffusion
equations describing the temperature field evolutions take
the forms of

∂T1
∂t = D

∂2T1
∂x2 + v

∂T1
∂x +

hS1
ρ rC r

; hs1 = κobd ( )T2 - T1 ,
∂T2
∂t = D

∂2T2
∂x2 - v

∂T2
∂x +

hS2
ρ rC r

; hs2 = κobd ( )T1 + T3 - 2T2 ,
∂T3

∂t = D
∂2T3

∂x2
+ v

∂T3

∂x +
hS3
ρ rC r

; hS3 = κobd ( )T2 + T4 - 2T3 ,
∂T4
∂t
= D

∂2T4
∂x2

- v ∂T4∂x +
hS4
ρ rC r

; hS4 = κobd ( )T3 - T4 , (1 )
where T1,2,3,4 are the temperature profiles in channels 1, 2, 3,
4. ρ r and C r are the mass density and heat capacity of the

ring materials, respectively. In Eq. (1), D = κ r ρ rC r is the

thermal diffusivity of the ring materials, with κ r denoting
the thermal conductivity. For the coupling oil layers, hs1,s2,s3,s4
and κo represent the coupling strengths between adjacent
channels and the thermal conductivity of oil, respectively.

Eq. (1) is based on the continuity of temperature fields on
the boundaries of oil layers. For simplicity, we first consider
the thermal flow in a slowly rotating ring with trivial
diffusivity D→ 0. The convection-diffusion equation is

expressed into
∂T
∂t = D

∂2T
∂x2 + v

∂T
∂x . Since the diffusion term is

a perturbation compared to the advection term, the convection-
diffusion equation can be reduced into a homogeneous form∂T
∂t = v

∂T
∂x , which has a wave form solution T ( x,t ) =

Ae )i(kx - ωt . Substituting the wave form solution back into the
inhomogeneous convection-diffusion equation, we will end up
with ω = -ik2D + kv. In poor thermal conducting materials,
the initial temperature field profile keeps unchanged during the
rotation. After one circle, the field coincides, where we define
the perimeter L = 2πR1 as the periodic wavelength of the
circulating energy packets. Straightforwardly, the wave number
k in the wave form solution can be defined as k = 2π L =
1 R1. Eq. (1) actually takes a similar form to the time-

independent Schrödinger equation Hψ ( x ) = Eψ ( x ), where the

Hamiltonian is

H0 =
æ

è

ç

ç
ççç
ç

ö

ø

÷

÷
÷÷÷
÷

S0 - kv ih 0 0
ih S0 - ih + kv ih 0
0 ih S0 - ih - kv ih
0 0 ih S0 + kv

(2 )

with )S0 = -i (k2D + h and h = κo ρ rC rbd. After some

derivations, eigenvalues of the Hamiltonian in Eq. (2) are
solved by

ω±1 = -i éëê ù
û
úk2D + h ± h2 - ( )kv 2 ,

ω±2 = -i éëê ù
û
úk2D + 2h ± 2h2 - ( )kv 2 . (3 )

In Eq. (3), the imaginary part of eigenvalues is mainly
determined by the coupling strength h, which characterizes the
decay rate of thermal energy. The eigenvalues will turn into
complex ones, on condition that the effect of convection
outweighs the coupling action. As shown by Eq. (3), ω±1 and
ω±2 are complex with real and imaginary parts, when h < kv and

2 h < kv, respectively. Eigenvectors of the Hamiltonian
corresponding to ω±1 and ω±2 are derived to be

u±1 (k ) =
æ

è

ç

ç

ç

ç
çç
ç

ç

ö

ø

÷

÷

÷

÷
÷÷
÷

÷
- -h2 + 2k2 v2 ± 2ikv h2 - k2 v2

h2
, - -ikv ± h2 - k2 v2

h
,

- -ikv ± h2 - k2 v2
h

,1

T

,

u±2 ( )k = ( )-1, h + ikv ± 2h2 - k2 v2
h

, -h + ikv ∓ 2h2 - k2 v2
h

,1
T

.(4 )

Fig. 1(c) shows the relation between the eigenvalues and
the flow velocity. In the calculation, we set R1 = 0.1m, R2 =0.11m, d = 5mm, b = 1mm, κ r = 100W/ (m·K ), κo =
1W/ (m·K ), ρr = ρo = 1000 kg/m3 and C r = Co = 1000 J/ (kg·
K ). Thus we have k = 1 R1 = 10 m-1, h = κo

ρ rC rbd
= 0.2 s-1

and D = κ r ρ rC r = 10-4m2 /s. In Fig. 1(c), there exist two EPs

in the spectrum, as marked by the red dots A and B. From Eqs.
(3) and (4), we obtain that the degenerated point A at v =
h k is a third order EP with the eigenvalues being

)ω±1, - 2 = -i (k2D + h and )ω+2 = -i (k2D + 3h . The

corresponding eigenvectors are u±1, - 2 = ( )-1, i, i, 1 T
and

u+2 = ( )-1,2 + i, - 2 + i,1 T
, respectively. The degenerated

point B at v = 2 h k is a typical two order EP with the

eigenvalues ω±1 = -i (k2D + h ) ± h and )ω±2 = -i (k2D + 2h .

The eigenvectors are u±1 =
[ ]-3 ± 2 2 ,i ( ∓1 + 2 ), i ( ∓1 + 2 ) ),1 T

and u±2 =
[ ]-1,1 + i 2 , - 1 + i 2 ,1 T

. Here, it should be mentioned

that the observed field evolution in diffusive systems
eventually follows the minimum loss route, where the high-
loss eigenfields will damp rapidly. As a result, in Fig. 1(c), the
whole system would take the branch of ω-1, as marked by the
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brown lines. Therefore, as the flow velocity increases, the
system will only experience the third order EP at vEP =
h k = 2 cm/s, where the APT breaking phase transition occurs.
Here we emphasized that the originally degenerated real parts
of eigenvalues split into the upper and lower branches after the
EPs, where we take the lower branch as ω-1, - 2 for consistency,
as shown in Fig. 1(c) and the following.

3. Results and Discussion

When the eigenvectors u satisfy P̂T̂u = ±u, the whole
system operates in the PT/APT symmetric phase and will
reach a steady state over time under the PT/APT symmetry

protection.22 When P̂T̂u ≠ ±u, the system is operating in the
PT/APT broken phase with unstable eigenstates.

3.1 Phase Transition at the High Order EP
From the Eq. (3), for v < vEP, all eigenvalues are pure
imaginary. Substituting ϕ = arcsin ( v/vEP ) into Eq. (4), the

eigenvectors can be further simplified into

u±1 ( )k = ( )cos2ϕ ∓ isin2ϕ, ∓ cosϕ + isinϕ, ∓ cosϕ + isinϕ,1 T,
u±2 ( )k = ( )-1, ( )1 ± 2 - sinϕ2 + isinϕ, - ( )1 ± 2 - sinϕ2 + isinϕ,1 T. (5 )
Combining the forward and backward wave form solutions,
we will obtain expressions of eigenstates T = [T1,T2,T3,T4 ] =
e-iωt [ ]u (k )eikx + u ( -k )e-ikx , where T1,2,3,4 denote the steady

temperature profiles in channels 1-4. All the possible
eigenstates with eigenfields in the four channels are derived

as follows

T+1 = 2e-iω+1 t [ ]cos ( )kx - 2ϕ , - cos ( )kx - ϕ , - cos ( )kx - ϕ ,coskx ,
T-1 = 2e-iω-1 t [ ]cos ( )kx + 2ϕ ,cos ( )kx + ϕ ,cos ( )kx + ϕ ,coskx ,

T+2 = 2e-iω+2 t
é

ë

ê
ê

ù

û

ú
ú

-coskx,(1 + 2 - sin2ϕ )coskx - sinϕsinkx,
-(1 + 2 - sin2ϕ )coskx - sinϕsinkx,coskx ,

T-2 = 2e-iω-2 t
é

ë

ê
ê

ù

û

ú
ú

-coskx,(1 - 2 - sin2ϕ )coskx - sinϕsinkx,
-(1 - 2 - sin2ϕ )coskx - sinϕsinkx,coskx . (6 )

Note that the whole system ends up with the minimum loss
case of T-1 over time, showing that the steady-state
temperature fields will stand still and phase differences
between T1 (T4 ) and T2 (T3 ) are ±ϕ = ±arcsin ( v/vEP ). This

claim is demonstrated from the full wave simulation results
by using a finite element solver COMSOL Multiphysics®

5.3, as shown in Fig. 2(a), where the initial temperature
fields in all channels are set by T1,2,3,4 = 293.15 + 100y (K ).
At v = vEP, namely, the third order transition point of
eigenstates from APT symmetry to APT symmetry
breaking, the temperature fields in each channel keep
standing still and the phase difference between adjacent
channels is π 2. To be specific, Fig. 2(b) shows the
eigenfields distribution T1,2,3,4 in the four eigenstates
T±1, - 2

~ - 2 [ cosk x, sink x, sink x, -cosk x ] and T+2~ -
2 [ coskx, - 5 cos ( kx + θ - π/2 ) , 5 cos ( kx - θ -

π/2 ), -cosk x ] (θ = arctan1/2 ).
For v > vEP, the whole system transits into the APT

Fig. 2 APT symmetry breaking at the high order EP in the four-channel
diffusive system. (a) The time evolution of phase differences φ1 - φ2 and

φ4 - φ3 vs. the flow velocity v, where we set vn = vEPsin ( )nπ
18 , (n =

1,2,…,9 ). (b) The eigenstates T±1 and T±2 at the EP. In (a) and (b), T1,2,3,4 and
φ1,2,3,4 denote the steady temperature profiles and the related phases in
channels 1-4. (c), (d) Theory and simulation results of time evolution of
φ1 - φ2 at v = 2 2 cm/s, when the APT symmetry is broken.
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breaking phase, where the evolution of temperature profiles
becomes very complicated. Intuitively, the convection effect
outperforms thermal coupling, making the system
impossible to reach a steady state. Substituting

)ψ = arccosh ( v vEP into Eq. (4) , we will derive the

eigenstates as

T+1 = e
Imω+1 t

é

ë

ê

ê

ê

ê

ê

ê

ê
ê
êê
ê

ê

ê

ê

ù

û

ú

ú

ú

ú

ú

ú

ú
ú
úú
ú

ú

ú

ú

-e-2ψcos ( )kx - Re ( )ω+1 t - e2ψcos ( )kx + Re ( )ω+1 t ,
e-ψcos ( )kx - Re ( )ω+1 t + eψcos ( )kx + Re ( )ω+1 t ,
e-ψcos ( )kx - Re ( )ω+1 t + eψcos ( )kx + Re ( )ω+1 t ,
cos ( )kx - Re ( )ω+1 t + cos ( )kx + Re ( )ω+1 t

T

,

T-1 = e
Imω-1 t

é

ë

ê

ê

ê

ê

ê

ê

ê
ê
êê
ê

ê

ê

ê

ù

û

ú

ú

ú

ú

ú

ú

ú
ú
úú
ú

ú

ú

ú

-e2ψcos ( )kx - Re ( )ω-1 t - e-2ψcos ( )kx + Re ( )ω-1 t ,
eψcos ( )kx - Re ( )ω-1 t + e-ψcos ( )kx + Re ( )ω-1 t ,
eψcos ( )kx - Re ( )ω-1 t + e-ψcos ( )kx + Re ( )ω-1 t ,
cos ( )kx - Re ( )ω-1 t + cos ( )kx + Re ( )ω-1 t

T

,

T+2 = e
Imω+2 t

é

ë

ê

ê

ê

ê

ê

ê

ê

ê
êê
ê

ê

ê

ê

ù

û

ú

ú

ú

ú

ú

ú

ú

ú
úú
ú

ú

ú

ú

-cos ( )kx - Re ( )ω+2 t - cos ( )kx + Re ( )ω+2 t ,
cos ( )kx + θ1 - Re ( )ω+2 t - cos ( )kx + θ1 + Re ( )ω+2 t ,
-cos ( )kx - θ1 - Re ( )ω+2 t - cos ( )kx - θ1 + Re ( )ω+2 t ,

cos ( )kx - Re ( )ω+2 t + cos ( )kx + Re ( )ω+2 t

T

,

( )tanθ1 = coshψ
1 + 2 - cosh2ψ ,

T-2 = e
Imω-2 t

é

ë

ê

ê

ê

ê

ê

ê
ê
êê
ê

ê

ê

ù

û

ú

ú

ú

ú

ú

ú
ú
úú
ú

ú

ú

-cos ( )kx - Re ( )ω-2 t - cos ( )kx + Re ( )ω-2 t ,
cos ( )kx + θ2 - Re ( )ω-2 t - cos ( )kx + θ2 + Re ( )ω-2 t ,
-cos ( )kx - θ2 - Re ( )ω-2 t - cos ( )kx - θ2 - Re ( )ω-2 t ,

cos ( )kx - Re ( )ω-2 t + cos ( )kx + Re ( )ω-2 t

T

,

( )tanθ2 = coshψ
1 - 2 - cosh2ψ . (7 )

In inspection of Eq. (7), the amplitudes of forward and
backward wave form components in the eigenstate T-1 are
A-1,1 = -e2ψ, B-1,1 = -e-2ψ, A-1,2 = eψ, B-1,2 = e-ψ, A-1,3 = eψ,
B-1,3 = e-ψ and A-1,4 = B-1,4 = 1. Obviously, the temperature
fields T1,2,3,4 are unstable over time evolution. Here we
utilize the local maximum to trace the position (or phase) of
temperature fields in each channel. From ∂Tj ∂ x = 0 and

Eq. (7), we will obtain the relation

)tankxj = tan[ ]Re(ω ) t ( A-1, j - B-1, j ) ( A-1, j + B-1, j . Define

the phase difference between channels 1 and 2 as

)φ1 - φ2 = k ( x1 - x2 . Considering tank ( x1 - x2 ) =
tankx1 - tankx2
1 + tankx1 ⋅ tankx2 , we have

φ1 - φ2 = arctan S1 tan[ ]Re ( )ω t

1 + S2 tan2 [ ]Re ( )ω t
, (8 )

where S1 = A-1,1 - B-1,1A-1,1 + B-1,1 -
A-1,2 - B-1,2
A-1,2 + B-1,2 , S2 = A-1,1 - B-1,1A-1,1 + B-1,1 ⋅

Fig. 3 Perturbation at the high order EP. (a) The schematic of flow
velocity modulation in the four channels. (b), (c) The imaginary part and
real part of eigenvalues vs. the flow velocity modulation ∆v, with the
brown lines denoting the scenario of the lowest energy dissipation. Red
dots at A', B', and C' mark the EPs. (d) The phase difference φ1 - φ2
between channels 1 and 2 over time evolution in APT symmetry, where
∆v = 0.5 cm/s,1.0 cm/s, 1.5 cm/s.
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A-1,2 - B-1,2
A-1,2 + B-1,2 . Figs. 2(c&d) show the theoretical calculation

and numerical simulation of the phase difference φ1 - φ2
over time evolution, respectively. The results unequivocally
reveal that the phase difference φ1 - φ2 keeps increasing
and will never reach a steady state on condition that APT
symmetry is breaking.

3.2 Perturbation at the High Order EP
In this section, we explore the case that a perturbation is
introduced to the high order EP. Here we introduce a flow
velocity modulation ±∆v into the four-channel system, as
schematically shown in Fig. 3(a). In this case, the Hamiltonian
containing the perturbation is rewritten as follows
H1 =
æ

è

ç

ç

ç

ç

ç

ç

ç
çç
ç

ç

ç

ö

ø

÷

÷

÷

÷

÷

÷

÷
÷÷
÷

÷

÷

)S0 - (kvEP - Δv ih 0 0
ih )S0 - ih + (kvEP + Δv ih 0
0 ih )S0 - ih - (kvEP + Δv ih

0 0 ih )S0 + (kvEP - Δv

.

(9 )
The imaginary part and the real part of the Hamiltonian

are shown in Figs. 3(b&c). The result shows that as the
modulation strength ∆v increases from 0 cm s, there exist
three EPs. One is the third order EP A' at ∆v = 0 cm s, while
the typical two order EPs B' and C' locate at ∆v = 0.57 cm s
and ∆v = 1.6 cm s. As we mentioned before, the diffusive
system is always following the lowest dissipation state over
time. Therefore, the eigenvalue of the Hamiltonian takes the
brown branch in Figs. 3(b&c). The results show that the APT
symmetry is robust against the weak perturbation at the high

order EP. When the perturbation strength is above the threshold
∆v = 1.6 cm s, the whole system will transit into APT
symmetry breaking across the EP C' and the temperature fields
become unstable. Fig. 3(d) displays the time evolution of phase
difference φ1 - φ2 at different modulation strengths, where the
APT is symmetric. In Fig. 3(d), we find that the phases of
steady-state temperature profiles in adjacent circulating
channels are relatively static (t > 60 s), as manifested in a
locked mode with a nearly constant phase difference. To be
specific, the phase differences of three locked modes (in
degrees) are 55° for ∆v = 0.5 cm s, 41.2° for ∆v = 1cm s,
and 25.6° for ∆v = 1.5 cm s, respectively.

As aforementioned, the temperature fields in diffusive
systems are unstable in the APT broken phase. Here we show
that by introducing flow velocity modulation at the high order
EP, the phase difference between adjacent channels will
oscillate over time instead of continuously diverging at APT
breaking. In addition, the phase oscillation at APT breaking is
independent with the initial condition. In Figs. 4(a-c), we
present a numerical demonstration of the phase oscillation
effect at APT breaking with three different initial conditions.
Specifically, in Fig. 4(a), the temperature profile at t = 0 s is
T1,3 = 293.15 + 100x (K ) and T2,4 = 293.15 + 100y (K ), with

φ1 - φ2 = -90°. In Fig. 4(b), the temperature profile at t =
0 s is T1,2,3,4 = 293.15 + 100y (K ), with φ1 - φ2 = 0°. In Fig. 4

(c), the temperature profile at t = 0 s is 293.15 - 100x (K )and

T2,4 = 293.15 + 100y (K ), with φ1 - φ2 = 90°. Here the flow

velocity modulation strength ∆v = 4 cm/s. The results reveal
that for the three cases, phase oscillation occurs at t > 40 s,
with the oscillation center angle φcenter = 45°and the time cycle

Fig. 4 Periodic phase oscillation in APT symmetry breaking. (a), (b) and (c)
Phase oscillation of φ1 - φ2 at ∆v = 4 cm/s with the initial condition being φ1 -
φ2 = -π/2, 0 and π/2 at t = 0 s, respectively. (d) The oscillation center angles/
time cycles vs. the flow velocity modulation ∆v.
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Tperiod = 32 s. In Figs. 4(a-c), the insets show the temperature
profiles in channels 1 and 2 at different times when the phase
difference φ1 - φ2 takes maximum or minimum values, vividly
displaying the relative periodic oscillation of phase difference
over time. Fig. 4(d) shows that both the oscillation center angle
and the time cycle decrease as the flow velocity modulation
strength increases. When the flow modulation strength ∆v is
much larger than the EP velocity vEP, for example ∆v =
40 cm/s, the flows in channels 1 and 2 can be regarded as
almost synchronous circulation. Therefore, the phase
oscillation is weak with the center angle close to 0 (φcenter =1.4°), while the time cycle of the phase jittering Tperiod =21.6 s.

At last, we would like to briefly discuss the cases of more
channels coupled, odd-number channels coupled and the
suggestions for experiment. When more channels are coupled,
we can basically obtain four-order EPs and beyond. In this
case, the technical difficulty for experimental observation is
increasing. Higher ordered EPs are intuitively associated with
very complicated behaviors in phase evolution. However, the
properties protected by APT symmetry are expected to be
unchanged. For example, the phase differences of temperature
profiles between adjacent channels for the steady states are
locked in the APT symmetric case. Phase oscillation at APT
symmetry breaking is also supposed to occur when the higher
ordered EP is perturbed with the velocity modulation.

In this work, we focus on the model of even-number
coupled channels with inside flows having equal-but-opposite
velocities. It will be interesting if an additional channel is
introduced to break the symmetry of the whole system (i.e.,
odd-number channels). In light of the Hamiltonian analysis,
there will exist an isolated branch with no conjugate pair in the
eigenvalue spectrum, which does not degenerate with other
paired branches. When the eigenmodes on the isolated branch
have the minimum loss, the system will follow this single
branch and do not experience EP-induced phase transition. For
the experimental demonstration, we can use nylon rings (𝜅r<2 W/(m∙K)) and grease (𝜅o ≈ 0.3 W/(m∙K)) as the channels
and coupling layers, respectively. The flow velocity is
implemented by rotating the rings with motors, where the
rotation speed can be accurately controlled. The initial
temperature fields are added to the rings through a copper plate
with the ends immersing into the hot and cold water baths.
Meanwhile, the copper plate is closely contacting with the
rings.

4. Conclusions
In summary, we comprehensively investigate the phase
evolution in a four-channel coupling-chain diffusive model. We
show that a third order EP is generated in the eigenspectrum of
the Hamiltonian for the four-channel toy model with the
background flow velocities in adjacent channels being

opposite. The high order EP is featured with APT phase
transition. At the APT symmetry, we theoretically derive and
numerically verify the phase differences of the steady-state
temperature profiles between adjacent channels, where the
flow velocity is below the threshold vEP. The divergence of
phase difference is also verified in the unstable diffusive
system at APT symmetry breaking. More interesting is to
introduce a perturbation into the background flow velocity at
the high order EP. We find that the APT symmetry is robust
against weak perturbation, where the system operates in a
locked mode with the phase difference of moving temperature
profiles in adjacent channels relatively unchanged. As the
modulation is strengthened to surpass a threshold (another EP),
the four-channel system will transit into the broken APT
symmetry. In APT breaking, the phenomenon of robust phase
oscillation is observed, which is irrelevant to the initial
conditions. This work marries the two scenarios of diffusive
systems and high order EP physics, which paves the way of
counterintuitive thermal flow regulation via phase transition in
coupling-chain diffusive systems.
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