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As most arbitrarily shaped cloaks can be approximated by polyhedra and further divided into a series of tetrahedra, we
propose in this paper a linear mapping approach to design cloaks with tetrahedron shapes (i. e. tetrahedral cloaks).
Homogeneous material properties of the cloak are straightforwardly obtained from coordinates of typical points.
Consequently, most arbitrarily shaped thermal cloaks can be designed using homogeneous anisotropic materials only. We
construct two polyhedral cloaks and show numerically that they successfully thermally conceal objects after a certain lapse
of time. We then demonstrate that cloaks with curved boundaries can also be obtained using our approach. It is further shown
how geometrical parameters affect the material properties and cloaking performances. One can flexibly tune the cloaking
performances based on practical requirements and material availabilities. We analyze effectiveness of a polygonal cloak
composed of an alternation of homogeneous isotropic layers, and note that cloaking deteriorates at short times. We finally
sketch an approach to realize 3D homogenized thermal metamaterials.
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1. Introduction
Heat cloaking refers to making an object invisible to heat flows
and is achieved by surrounding the object with a predefined
heat cloak. It is inspired by the initial works on invisibility of
electromagnetic waves. 1–3 Beyond electromagnetism, 4-7

cloaking is widely applied to elastic waves,8-13 acoustics,14–16

and diffusion fields. 17– 20 In our paper we focus on heat
cloaking. Fan et. al. 21 exploited shaped graded materials where
heat energy was manipulated to transfer from regions of low
temperature to regions of high temperature. Guenneau et.
al. 22 first proposed a transformed coordinate approach of
thermal cloaking in the heat equation and established multi-
layered structures with isotropic materials, which was verified
later by experiments.23–26 Researchers have then made great
achievements on heat manipulation with various thermal meta-
devices.27–36 The pioneering works mainly focused on regular
shaped cloaks, i. e. cylindrical and spherical cloaks. Cloaks
with more complicated boundaries were then studied in the

field of electromagnetism and acoustics.37–44 These transforms
were later introduced for heat diffusion fields.45 The obtained
heat cloaks were inhomogeneous and anisotropic which is
diffcult to realize in practice. Some researchers studied non
regular-shaped cloaks and established systems with
homogeneous parts, 46-48 but they only dealt with limited
geometries. Han et.al. designed arbitrarily polygonal cloaks
with homogeneous and non-singular parameters,49 which was
realized by Liu et.al. with four kinds of natural bulk materials
in bilayer configuration throughout. 50 Xu et. al. designed
arbitrary polygonal thermal harvesting schemes using the
linear mapping function.51-52 Li et.al. extended these works to
three dimensions and proposed a multistep transformation
approach for a tetrahedral cloak.53 However, in Li's nice work,
the transformation for a tetrahedral cloak is realized in three
steps. The transformation should be conducted in a certain
order as the later transformation step is dependent on the
former one. We propose instead a one-step linear mapping for
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polyhedral cloaks where each transformation is independent.
Homogeneous material parameters are obtained in this process,
facilitating practical realizations. It is known that an arbitrary
shaped cloak can be approached by polyhedra, but a
quantitative analysis based on this approximation was rarely
considered. 50-53 We first show how cloaks with curved
boundaries (regular spherical cloak and cylindrical cloak as
illustrative cases here) are approximated by polyhedra and we
demonstrate the good cloaking performances of the
approximated cloaks. For non-regular shaped cloaks, the
convergence behavior in homogenization process hasn't been
studied, and this paper primarily focuses on this problem. We
study the convergence behavior of a multi-layered polygonal
cloak in both steady-state and transient state cases. Influences
of the cloak's shape and lapse of time on the convergence rate
are numerically established. Finally, we propose an approach
to realize 3D homogenized thermal metamaterials.

2. Methods
We first consider a linear transformation from the tetrahedral
domain in virtual space with local coordinate axes ( x, y, z ) to
the physical tetrahedral space with local coordinate axes
( x', y', z') (see Fig. 1) by

( )x'y'
z'
= ( )a11 a12 a13
a21 a22 a23
a31 a32 a33

( )xy
z
+ ( )a4a5
a6

, (1)

where the coefficients aij and ah are constant. Substituting four
groups of corresponding vertices in Eq. 1, we get 12 equations
for the 12 coefficients. By solving the 12 equations, we find the
transformation coefficients as
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The transient heat conduction equation without sources
can be written as

∇∙( )k∇T - ρc ∂T∂t = 0, (3)

where T represents the temperature, k and ρc are thermal

conductivity (in unit of W.m-1. K -1) and the product of density
by heat capacity (in unit of J.Kg-1.K -1), respectively.

According to Ref. [22], this equation is form-invariant under
coordinate transformation. Note that the transformed
parameters are21-22

k' = JkJT

det (J ) and ( )ρc ' = ρc
det (J ), (4)

where

J = ( )a11 a12 a13
a21 a22 a23
a31 a32 a33

. (5)

Now, the coefficient matrix J is a constant matrix which
is independent of x, y and z. As a result, material properties

derived from Eq. 4 are homogeneous.

Fig. 1 Coordinate transformation between two tetrahedra. The
tetrahedral domain in virtual space (left) is mapped to a
physical tetrahedral space (right) by linear transformation.

In Fig. 2 we show a regular tetrahedral cloak presented by
Ref. [53], where the shaded domain denotes the designed
domain (cloaking domain) while tetrahedron OA1B1C1
represents the domain to be cloaked (cloaked domain). For
clarity, we select the edge OA2 to be along the x-axis, and the
face OA2B2 in the xoy plane. We further divide the polyhedral

cloaking domain into three tetrahedral segments (marked in
different colour in Fig. 2) and apply linear coordinate
transformation to each segment. Tetrahedron A1A2B2C2,
A1B1B2C2 and A1B1C1C2 in physical space are mapped from
A0A2B2C2, A0B0B2C2 and A0B0C0C2 in virtual space (outlined
by green lines in Fig. 2), respectively. Since all the points are
located on three edges, we define OA0 = λ1OA2, OA1 =
λ2OA2, OB0 = µ1OB2, OB1 = µ2OB2, OC0 = ε1OC2 and

OC1 = ε2OC2, where λi, ui and εi are all known constants. In
the transformation process, the physical space and virtual space
are defined by the same coordinate system.

Fig. 2 A general tetrahedron cloak and the sub-domains of the
cloaking domain.

In Ref. [53], the transformation for a tetrahedron cloak is
completed by multi-steps. The three segments should be
mapped in a specific order as the latter transformation step is
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dependent on the former one. In our method, the
transformations are all conducted by one step and each
transformation is independent. Without losing generality, we
first map the points in tetrahedron A0A2B2C2 to the points in
tetrahedron A1A2B2C2. Vertices of the given polyhedron in

virtual space A0 (λ1xA2, 0, 0 ), A2 ( )xA2, 0, 0 , B2 ( xB2, yB2, 0 ) and

C2 ( xC2, yC2, zC2 ) are mapped to A1 (λ2 xA2, 0, 0 ),
A2 ( )xA2, 0, 0 , B2 ( xB2, yB2, 0 ) and C2 ( xC2, yC2, zC2 ) in physical

space, respectively. Substituting these four typical coordinates
in Eq. 1, we get the transformation from tetrahedron A0A2B2C2
to tetrahedron A1A2B2C2 by

( )x'1y'1
z'1

= ( )b11 b12 b13
b21 b22 b23
b31 b32 b33

( )x1y1
z1

+ ( )b4b5
b6

, (6)

where

b11 = 1 - λ21 - λ1 ,

b12 = λ2 - λ11 - λ1
yB2 - xB2
yB2

,

b13 = - λ2 - λ11 - λ1

xB2 yC2 - xC2 y
B2 + xA2 ( )yB2 - yC2
yB2 zC2

,

b4 = λ2 - λ11 - λ1 xA2,
b22 = b33 = 1,

b21 = b23 = b31 = b32 = b5 = b6 = 0.

Similarly, the points in tetrahedron A0B0B2C2 are mapped
onto tetrahedron A1B1B2C2 by

( )x'2y'2
z'2

= ( )c11 c12 c13
c21 c22 c23
c31 c32 c33

( )x2y2
z2

+ ( )c4c5
c6

, (7)

where
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- 1 + 1,
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yB2
zC2 ( )xC2

λ1xA2
- 1 - yC2

zC2 ( )xB2
λ1xA2

- 1 ,

c5 = u2 - u11 - u1 yB2,
c31 = c32 = c6 = 0,
c33 = 1 .

The mapping from points in tetrahedron A0B0C0C2 to
points in tetrahedron A1B1C1C2 is given by

( )x'3y'3
z'3

= ( )d11 d12 d13
d21 d22 d23
d31 d32 d33

( )x3y3
z3

+ ( )d4d5
d6

, (8)

where

d11 = λ2λ1 -
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λ1xA2

- yC2
u1 yB2 ( )u1xB2
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- 1 - 1 + 1,

d4 = ɛ2 - ɛ11 - ɛ1 xC2,

d5 = ɛ2 - ɛ11 - ɛ1 yC2,

d6 = ɛ2 - ɛ11 - ɛ1 zC2
Substituting the obtained transformation matrices J1, J2

and J3 into Eq. (4), we get the transformed material properties
for each segment. In the above transformation, we assume the
tetrahedron OA0B0C0 is a void and we map it to the void
tetrahedron OA1B1C1, thus the object inside OA1B1C1 is
cloaked. Remark that we can choose to fill the cloaked domain
with a medium. Following Ref. [54], the transformed
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parameters for the cloaked domain are given by

k'in = λ 1u1ɛ1λ 2u2ɛ2 diag ( )( )λ 2
λ 1

2
, ( )u2

u1

2
, ( )ɛ2ɛ1

2
, ( )ρc 'in =

λ1u1ɛ1
λ2u2ɛ2 ( )ρc .

(9)

3. Results and discussion
3.1 An Octahedral Cloak
We first build an octahedral cloak where OA2,OB2 and OC2 lie
on the x, y and z axes, respectively (see Fig. (3a)). The domain

to be cloaked is depicted in blue while the cloaking domain is
depicted in the grey. We split the top and bottom halves into
four symmetric tetrahedra. Each tetrahedron is divided into
three segments and then mapped following the method outlined
in above section. In the octahedral cloak, we set λ1 = μ1 =
ε1 = 0.01 and λ2 = μ2 = ε2 = 0.5. For convenience, we

normalize the material properties with respect to unit
conductivity and heat capacity in background medium. The
octahedral cloak is totally divided into 8 tetrahedra and hence
24 segments. Owing to symmetry, we only present material
properties of the three unique segments, which are

ì

í

î

ï
ï
ï
ï

kρ1 = diag ( )0.38, 1.98, 2.58 , ( )ρc '1 = 1.98
kρ2 = diag ( )39.6, 6.5, 10.8 , ( )ρc '2 = 0.04

kρ3 = diag ( )1.98, 5.86, 0.0001 , ( )ρc '3 = 0.0008
Properties of other parts can be easily obtained using

symmetries. Numerical simulations are then conducted with
the finite element package COMSOL Multiphysics. We set
temperatures on the left boundary (the boundary in negative x
axis) and right boundary (the boundary in positive x axis) as
TL = 2K and TR = 1K, respectively. Other boundaries are
thermally insulated to ensure that conduction is the dominant
heat transfer mechanism in this case. For clarity, we only show
the cloaking performances on two typical sections where the
white lines are iso-thermal lines. Simulation results for the
steady-state case (see Fig. (3b)) show that heat fluxes pass
through the object and return to their original trajectory. As a
result, the external heat field is not disturbed. For an outside
observer, it seems that the heat is transferred through a
homogeneous medium.

Fig. 3 Schematic of (a) an octahedral heat cloak and (b) its
steady-state cloaking performance.

In the dynamic case, we add perfectly matched layer on
the right boundary and apply different time-dependent thermal
sources on the left boundary, which are T1 = T0exp ( )-t2 /2 +
1 and T2 = T0sin ( )πt/2 + 2. We set T0 = 1K and conduct

simulations. Good cloaking performances are observed for
both cases at different times. In Fig. 4, we set continuously
decreasing temperatures on the left boundary and observe good
cloaking effects all the time. In Fig. 5, we apply periodic
thermal boundary on the left and notice that heat energy
transfers from left to right. During the transfer process, good
cloaking performance is observed at changing thermal profiles.

Fig. 4 Dynamic cloaking performances of the octahedral cloak
with the left boundary T1 = T0exp ( )-t2 /2 + 1.

Fig. 5 Dynamic cloaking performances of the octahedral cloak
with the left boundary T2 = T0sin ( )πt/2 + 2.

3.2 A Polyhedral Cloak with 32 Faces
We also designed more complicated cloaks with 32 faces (see
Fig. 6). Similar to the octahedral cloak, the polyhedral cloak
is totally divided into 32 tetrahedra and hence 96 segments. We
set λ1 = μ1 = ε1 = 0.01 and λ2 = μ2 = ε2 = 0.5. Owing to
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symmetry, we only consider the parts in the first quadrant as
the illustrative case and present material properties of the
unique segments. In the first quadrant, the cloak is divided in
four parts and each part is further divided into 12 segments, of
which two parts (6 segments) are unique. For the central part
OB2C2E2, the properties of the three segments are

ì

í

î

ï
ï
ï
ï

kρ1 = diag ( )0.51,1.98,1.98 , ( )ρc '1 = 1.98
kρ2 = diag ( )291.14,0.05,0.03 , ( )ρc '2 = 0.04
kρ3 = diag ( )291.14,0.05,0.03 , ( )ρc '3 = 0.0008

.

The other three parts on the edges have similar forms.
Therefore, we present the typical part OA2B2C2 with one edge
on the x-axis:

ì

í

î

ï
ï
ï
ï

kρ1 = diag ( )2.286,0.437,1.977 , ( )ρc '1 = 1.98
kρ2 = diag ( )146.755,0.007,0.035 , ( )ρc '2 = 0.04
kρ3 = diag ( )2.647,0.002,1.98 , ( )ρc '3 = 0.0008

Simulation results for the steady-state case (see Fig. 6b)
again show that this polyhedral cloak achieves good cloaking.
In the dynamic case, we apply same boundary conditions as
those of the octahedral cloak. In Fig. 7 and Fig. 8, good
cloaking performances are observed at changing thermal
profiles.

Fig. 6 Schematic of (a) a polyhedral heat cloak and (b) its
steady-state cloaking performance.

Fig. 7 Dynamic cloaking performances of the polyhedral cloak
with the left boundary T1 = T0exp ( )-t2 /2 + 1.

Fig. 8 Dynamic cloaking performances of the polyhedral cloak
with the left boundary T2 = T0sin ( )πt/2 + 2.

3.3 Cloaks with Curved Boundaries
We have shown in the above section that the proposed method
can be applied to polyhedral cloaks with more faces.
Theoretically, an arbitrarily shaped cloak with curved
boundaries can be approximated by an arbitrarily large number
of polyhedral cloaks, hence our approach applies to a wide
range of geometries. For cloaks with curved boundaries, they
are firstly approximated as series of tetrahedra and then divided
into homogeneous segments. In this process, we approximate
the curves by piecewise lines and apply a linear transformation
on each segment. As an illustration, we show in this section
how spherical cloaks and cylindrical cloaks can be obtained by
our method.We build an arbitrary tetrahedron, three vertices of
which lie on the surface of a sphere and one vertex lies on the
centre (see Fig. 9). We make simplifying assumptions that

α = β = γ = θ, λ1 = μ1 = ε1 = η1, λ2 = μ2 = ε2 = η2. (10)

Fig. 9 Diagram demonstration of (a) a tetrahedron derived
from the sphere and (b) the studied tetrahedron with
simplifying conditions.

The tetrahedron will increasingly approximate parts of the
sphere as θ decreases. It is also worth noting that the second
and third parts (denoted as A0B0B2C2 and A0B0C0C2 in Fig. 9,
respectively) occupy increasingly small relative fractions, and
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can be negligible as θ approaches 0. Therefore, we mainly
focus on the first part and easily get the material properties as
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÷
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1 - λ2
1 - λ1 +

2 ( )1 - η1
1 - η2 ( )η2 - η1

1 - η1
2
tan ( )θ - η2 - η11 - η2 tan ( )θ - η2 - η11 - η2 tan ( )θ

- η2 - η11 - η2 tan ( )θ
1 - η1
1 - η2 0

- η2 - η11 - η2 tan ( )θ 0 1 - η1
1 - η2

, ( )ρc ' = 1 - η11 - η2

As θ approaches 0, the heat conductivity in the principal
direction can be expressed as

k's ( )θ→ 0 = diag ( )1 - η2
1 - η1 ,

1 - η1
1 - η2 ,

1 - η1
1 - η2 . (12)

We build spherical cloaks and conduct simulations when
η2 = 0.5 and η1 is varied. The results in Fig. 10 show that we

can still achieve good cloaking effects using the constitutive
properties derived from the polyhedral cloaks. It is also
observed that the cloaking performance deteriorates with
increasing η1, as more and more heat fluxes invade the cloaked

domain. When η1 = 0.5, there is no physical transformation

and hence no cloaking effects at all.
Similarly, we derive the material properties of a

cylindrical cloak from the polyhedral approach as

k'c ( )θ→ 0 = diag ( )1 - η2
1 - η1 ,

1 - η1
1 - η2 ,

1 - η1
1 - η2 . (13)

We build cylindrical cloaks and conduct simulations
where η1 = 0.5and η1 is varied. Again, we show in Fig. 11 that

the polygonal approach is also applicable to cylindrical cloaks.
The parameter η1 shows similar influence on the cloaking

performance. Though smaller η1 is desirable in order to

improve cloaking, one should consider other influential factors
in realizations, e. g. material anisotropy and availability. A

smaller value of η1 means more difficulties during realization,

which we will discuss in the next section.

3.4 Influence of Geometrical Parameters
In the proposed method, we map a small hollow tetrahedron
OA0B0C0 to tetrahedron OA1B1C1, thus the object inside the
void tetrahedron is cloaked. As we consider the transformation
from a hollow tetrahedron instead of a point, we obtain non-
singular material properties. This is inspired by the regularized
transform first proposed in Ref. [54]. We choose the octahedral
cloak in above section to illustrate the effect of geometry
parameters on cloaking.

Without lack of generality, we set λ2 = μ2 = ε2 = 0.5 and

λ1 = μ1 = ε1 = η1 where η1 is a variable. A perturbation index

is introduced to characterize the cloaking performance

MV ( )t = ∫Ω || T ( )t, x, y, z - Tr ( t, x, y, z ) dΩ
∫ΩdΩ , (14)

where Ω denotes the probe domain of external thermal fields
and Tr represents temperatures of the homogeneous medium.
The index MV reveals all perturbations of the external heat
profile. A lower value of MV denotes better cloaking
performance. We use M 1

V and M 2
V to reveal the case of only a

small hollow tetrahedron and a proposed cloak, respectively.
We can observe in Fig. 12(a) that the two values are always
identical, demonstrating the effectiveness of our design.
Besides, it can be seen that increasing η1 results in larger

k' = (11)

Fig. 10 Performances of the approximated
spherical cloak for (a) η1 = 0.001, (b) η1 =
0.01, (c) η1 = 0.1 and (d) η1 = 0.5.

Fig. 11 Performances of the approximated
cylindrical cloak for (a) η1 = 0.001, (b) η1 =
0.01, (c) η1 = 0.1 and (d) η1 = 0.5.
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perturbations and thus worsens the effects of cloaking. When
η1 equals the limiting value of 0.5, namely when the

tetrahedron OA0B0C0 coincides with tetrahedron OA1B1C1,
there is no cloaking effect at all.

It seems that we should make η1 as small as possible to

achieve better cloaking performance. However, the
transformed material properties are always beyond the range
of natural materials. Geometry parameters determine the
material properties and they should be tailored to make the
cloaks easier to realize. As we can see in Fig. 12, a smaller η1
means a higher degree of material anisotropy, which poses
more difficulties in practical realization. Some compromise
between performance and anisotropy is needed, and one
quantity is necessarily improved at the cost of trading off the
other one.

Fig. 12 Effects of the geometry parameters on cloaking
performances and material properties.

3.5 Towards Effectiveness of Homogenized Multi-Layered
Cloaks
We have obtained polyhedral heat cloaks with non-singular
homogeneous but anisotropic material properties. In real
applications, the material parameters still need to be fulfilled
usually by layered structures. For this purpose, we start from
alternations of isotropic thin layers with respective constitutive
properties (k'1, ρ'1c'1 )and (k'2, ρ'2c'2 ). We study a polygonal cloak

and derive material properties by the proposed approach. As
the designed polygonal cloak is piecewise homogeneous, the
constitutive properties are all locally constant and do not
depend on the position. The required heat conductivity and
product of density by heat capacity can be approximated by22

k'⊥ = ( )l1 + l2 k'1k'2
l1k'1 + l2k'2 , k'∥ =

l1k'1 + l2k'2
l1 + l2 , ρ'c' = l1 ρ'1 + l2 ρ'2

l1 + l2 , (15)

where l1and l2 are thickness ratios of the two layers. For the

cloak in Fig. 13, geometrical parameters are ||OA2 = ||OB2 =
1, ||OA1 = ||OB1 = 0.5 and normalized material properties are

k1 = 4.96, k2 = 0.20, k3 = 392.03, k4 = 0.0026. Perpendicular

vectors of the layers are V 1⊥ = ( )-0.85, - 0.52 T
and V2⊥ =

( )-0.70, - 0.71 T
, respectively.

As Petiteau et al. [55] proposed, we can determine
quantitatively the effectiveness of a cloak by evaluating the
standard deviation of the isotherms in the vicinity of the cloak.
A theoretically perfect cloak gives a standard deviation value
of zero for all isotherms outside the cloak as if the medium
were completely homogeneous. In the ideal case, all isotherms
outside the cloak are straight. In Fig. 13 we chose the isotherm
that passes through vertex A2 in the diffusion direction as it is
the most difficult to straighten. We performed numerical
simulations to check the homogenization convergence as the
number of layers N increases. In Fig. 14, increasing
effectiveness (decreasing standard deviation) is observed for
multi-layered cloaks as the number of thin layers N increases.
We obtain the polynomial fit relationship for the convergence
rate as

y = -2.2218 - 1.8269x + 0.5347x2 , (16)

where y is the standard deviation and x is the logarithm of the
number of layers: x = log (N ). Eq. 16 has a different form with

Petiteau's cylindrical cloak, 55 demonstrating that the cloak's
shape directly affects convergence. Besides, the layered
polygonal cloak consists of homogeneous isotropic layers,
which is not the case in Petiteau's work where heterogeneous
layers are used. This can also have an impact on convergence.

Fig. 13 Two-dimensional polygonal cloak composed of four
isotropic materials (left) and the cloaking performances (right).

Fig. 14 Logarithm of the standard deviation for the measured
isotherm as a function of log (N ). For clarity, the values of

log (N ) are replaced by values of N.

ES Energy & Environment

© Engineered Science Publisher LLC 2020 ES Energy Environ., 2020, 7, 29-39 | 35

Research Paper



Now the goal is to ascertain that the homogenized multi-
layered cloak mimics the perfect cloak (as built by transformed
parameters). We derive the standard deviation of the perfect
cloak for the measured isotherm by numerical simulations, and
substitute the obtained value (8.61 × 10-16 in this case) in Eq.
16. Direct calculation gives the number of layers required to
achieve our goal: N = 2.3354 × 104. It is difficult or even
impossible to build a nearly perfect cloak with so many layers.
However, the convergence analysis provides us with guidance
on the number of layers needed for a certain effectiveness
tolerance.

We note that in Ref. [56], the following result is
established for cloaks with a sufficiently regular (Lipschitz)
boundary within a bounded domain Ω of boundary ∂Ω
Proposition 1: Given η1 > 0, there exists a threshold time

t* ( )η1 < ∞ such that for all t ≥ t* ( )η1

∫Ω ∖ cloak || T ( )t,x,y,z - Tr ( t,x,y,z ) 2d∂Ω ≤ C1ηD1 , (17)

where C1 is a constant independent of η1 and D = 2,3 is

dimension of the physical space. This means that after the lapse
of a certain threshold time t*, the temperature field T outside
the cloak should be close to the temperature field Tr of the
uniformly conducting medium irrespective of the conductivity
enclosed in the cloaked region. In other words, boundary
measurements on ∂Ω cannot tell apart T and Tr.

We first note that in Ref. [57], the following
homogenization result is established which can be applied to
layered cloaks with a sufficiently regular (Lipschitz) boundary
Proposition 2: Given a large enough integer N > 0, there exists
a threshold time t* ( )N < ∞ such that for all t ≥ t* ( )N

∫
cloak

|| T ( )t,x,y,z - TN ( t,x,y,z ) 2dΩ ≤ C2N -1, (18)

where C2 is a constant independent of N, T is the temperature
field in the ideal cloak and TN that in the layered cloak with N
layers.

A direct application of the triangular inequality to
Propositions 1 and 2 leads to the following result for a bounded
domain Ω encompassing either a polygonal (D = 2) or a
polyhedral cloak approximated by isotropic homogeneous
layers:
Corollary: Given a small parameter η1 and a large enough

integer N > 0, there exists a threshold time t* ( )η1, N < ∞ such

that for all t ≥ t* ( )η1, N we have

∫Ω ∖ cloak || Tr ( )t,x,y,z - TN ( t,x,y,z ) 2d∂Ω ≤ ( )C1ηD1 + C2N -1 , (19)

where Tr is the temperature field in the homogeneous medium
and TN that in the homogeneous medium surrounding the
layered cloak with N layers. Using this theoretical result as a
guidance, we then compare the effectiveness of the layered

cloak and perfect cloak in the transient regime. It is observed
in Fig. 15(a) that the standard deviation for a layered cloak first
increases and then gradually decreases with the lapse of time,
which demonstrates that a layered cloak approximates well an
ideal cloak only after a certain lapse of time, whereas at initial
times the approximation will be fairly poor. In Fig. 15(b) it is
shown that the convergence rate is different at different time
steps, demonstrating that in the transient regime the
convergence depends on both the lapse of time and the shape
of cloaks.

Fig. 15 Standard deviation of the measured isotherm at
different time steps with (a) varied time (b) varied number of
layers.

We should also note that we use four isotropic materials
in the layered polygonal cloak. In the approximation of cloaks
with curved shapes, we divide the boundary curves into
piecewise line sides and we need four materials for each side.
Therefore, the number of heat conductivities needed in the
homogenization directly depends on the number of divided
sides of a cloak. In the two-dimensional case, we will need 4n
different conductivities and thus 4n different types of layers for
n sides. As an inhomogeneous spherical or cylindrical cloak
can be approximated by a polyhedral cloak with a very large
number of sides, this demonstrates that it is always easier to
build a polyhedral cloak than a spherical cloak or a cylindrical
cloak.

3.6 Homogenization of 3D Thermal Metamaterials
Let us finally consider a periodic medium with cubic

elementary cells ηY = [ ]0, η 3
of side-length η = 1/N where N

is a large integer, so that η ≪ 1. Then the solution Tη of the

heat equation with fast oscillating parameters Aη =
k ( x/η, y/η, z/η ) and Bη = ρ ( x/η, y/η, z/η )c ( x/η, y/η, z/η )

∇ ⋅ ( )Aη∇Tη = Bη

∂
∂t Tη (20)

tends, when η tends to zero, to the solution Thom of the

following homogenized heat equation58

∇ ⋅ ( )[ ]Ahom ∇Thom = Bhom

∂
∂t Thom, (21)

where Bhom = ρc
Y
= ∫01 ∫01 ∫01ρ ( x, y, z )c ( x,y, z )dxdydz denotes

the average of B over a periodic cell Y = [ ]0,1 3
, and [ ]Ahom is

a 3 × 3 matrix given by58
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Y
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Y
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k Y - k∂zV3
Y

, (22)

where ∂x ≔ ∂/∂x, ∂y ≔ ∂/∂y, ∂z ≔ ∂/∂z and V1 ( x, y, z ),
V2 ( x, y, z ) and V3 ( x, y, z ) are solutions defined up to an

additive constant of three auxiliary problems of thermostatic
type on the periodic cell Y:58

ì

í

î

ï
ïï
ï

ï
ïï
ï

∇ ⋅ [ ]k ( )x,y,z ∇ ( )V1 - x = 0
∇ ⋅ [ ]k ( )x,y,z ∇ ( )V2 - y = 0
∇ ⋅ [ ]k ( )x,y,z ∇ ( )V3 - z = 0

. (23)

Following this approach, we build a cubic unit cell Y =
[ ]0,1 3

(medium A) with cross bars (medium B) inside as

inclusions (see Fig. 16). Medium A is defined as a heat
insulating material (air), which means that we have just one
medium, and then all the integrals are taken over Y ∖ A.
Without loss of generality, we only choose the segment kρ1 =diag (0.38, 1.98, 2.58 ) of the octahedral cloak in above

section as the studied part and design homogenized cells.
Normalized heat conductivity of medium B is defined as
kB = 400. We solved the auxiliary problems and calculate the

homogenized conductivity, then we got ( )Lx, Ly, Lz =
(0.03, 0.07, 0.08 ) after parameter sweeping and some

optimization. It is noted that our designed elementary cell is
not the unique solution to homogenization of 3D thermal
metamaterials, one can achieve the homogenization by other
structures and materials using some inverse homogenization
techniques.59

Fig. 16 One fourth of the octahedral cloak with one segment
homogenized by unit cells (left) and the cloaking performances
(right). When implanted into the cloak, the unit cell was
rescaled.

We choose the isotherm that passes through vertex A2 and
derived the standard deviation with a different number of unit
cells. The number of cells is calculated as dividing the volume
of the homogenized segment by the volume ofone cell. As
shown in Fig. 17, decreasing standard deviation (i.e. increasing
effectiveness) can be observed with an increasing number of

cells. Interested readers can conduct more quantitative analysis
towards the effectiveness of this homogenized cloak following
the presented approach, but it is beyond our scope due to space
limit.

Fig. 17 Logarithm of the standard deviation for the measured
isotherm versus number of elementary cells.

Three-dimensional thermal cloaks were first realized with
bulk isotropic materials in Ref. [25, 26]. The bilayer strategy
was then extended to the design of full-parameter
omnidirectional elliptical cloaks. 34 These authors advanced
significantly this field. The bilayer method they proposed is
direct and easy to realize with natural materials. However, we
notice that in these impressive works, thermal insulators were
added to create cloaking effects. Besides, only a few shapes
(spherical and elliptical) were considered. In designing cloaks
with complicated shapes, it would be far from trivial to obtain
the correct bilayer design. In contrast, the method we propose
is not constrained by the thermal insulation layer requirement.
We achieve the homogenization of 3D thermal metamaterials
by solving annex problems of the thermostatic type on a
periodic cell, which is a direct approach that applies to
arbitrary shapes. As mentioned above, there exist various
effective structures. One can design the homogenized cell
considering both the availability of materials and the difficulty
of fabrication.

4. Conclusion
We have proposed a method to design three dimensional
polyhedral cloaks, where the cloak is divided into tetrahedral
parts. Constitutive properties are directly derived from typical
coordinates by a straightforward one-step linear mapping. An
octahedral cloak and a polyhedral cloak with 32 faces were
designed to validate the proposed method. Simulation results
show that the designed cloaks work well in cloaking objects
after a certain lapse of time. As most of arbitrarily shaped
cloaks can be approximated by polyhedrons, the proposed
method can be applied to a wide range of geometries. As
illustrative cases, we approximated spherical and cylindrical
cloaks by polyhedrons and obtained the approximated material
properties. It was shown that the approximated cloaks indeed
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achieve good cloaking.
The geometrical parameters used in the transformation

affect the properties of each segment and thus the cloaking
performance. An increment in η1 provides a larger range of

material properties, but at the sacrifice of some cloaking
performance. In real applications, the parameters can be
flexibly adjusted to achieve a trade off between cloaking
performance and complexity of the material properties.

Finally, we conducted an analysis of the effectiveness of
multi-layered cloaks. In the static regime, the cloak's shape
directly affects convergence. However, in the transient regime
convergence depends on both the lapse of time and the shape
of cloaks. The cloaking performance deteriorates at short
times, and becomes gradually better after a certain lapse of
time. Homogenization of 3D thermal metamaterials was also
investigated and it was found that 3D cloaks become more
efficient with more built elementary cell.
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