
© Engineered Science Publisher LLC 202056 | ES Energy Environ., 2020, 7, 56-64

RESEARCH PAPER

Anomalous Transient Heat Conduction in Fractal Metamaterials

Wuxi Lin, Shengpeng Huang and Jie Ren*

Keywords: Anomalous heat diffusion; Fractal metamaterials; Non-integer dimensional; Fractional Laplacian operator

Received 3 October 2019, Accepted 16 December 2019
DOI: 10.30919/esee8c371

Transient dynamics of heat conduction in isotropic fractal metamaterials is investigated. By using the Laplacian
operator in non-integer dimension, we analytically and numerically study the effect of fractal dimensionality on the
evolution of the temperature profile, heat flux and excess energy under certain initial and boundary conditions.
Particularly, with randomly distributed absorbing heat sinks in the fractal metamaterials, we obtain an anomalous non-
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1. Introduction
Heat problem has attracted lots of attention in meta-structures
in the past decade.1-4 Particularly, heat propagation as well as
mass or excitation diffusion in fractal media are of great
importance in our everyday life.5 This is because fractal meta-
media describe the porous, composite, networked, hierarchical
metamaterials, in which a part of the structure resembles larger
entities or the whole structure. Such self-affine structural
patterns are ubiquitous in many fields such as physics, material
science and life science. For example, in branching artery
network,6 in photosynthesis,7 and in bones,8 the fractal media
of statistical self-similarity is quite involved. Therefore, fractal
metamaterials have attracted much attention across diverse
research fields, ranging from mechanics9,10 and elastics, 11 to
acoustics12-14 and optics.15-17 Different from those research that
focused on effects of fractal structure on wave dynamics, heat
conduction and transfer in fractal metamaterials is in general
a diffusion process.

Effective thermal conductivity is often used to
characterize the heat diffusion in fractal media of fractal
dimensions. Various methods have been developed to
investigate the effective thermal conductivity of porous
media,18-25 that may be even used to build a thermal diode.26

Pitchumani27 applied fractal theory in the research of the
effective thermal conductivity of unidirectional fibrous
composites. Yu and Cheng28 developed a fractal model to
calculate the effective thermal conductivity of mono- and bi-
dispersed porous media. Using thermal-electrical analogy,
Yu29 and Kou30 presented fractal models and fractal analysis
of effective thermal conductivity of composites with
embedded fractal-like tree networks and saturated fractal
porous media, respectively.

To study fractal media of fractal dimensions, two methods
are often applied: one is fractional calculus31,32 and the other
one is calculus in fractional dimension space. In fractional
calculus, factorial is replaced by gamma function to expand the
application scope of previous calculuses, 33 where the
differential and integral calculus of time are usually involved.
While calculus in fractional dimension space pays more
attention to the geometric property of the non-integer space. An
axiomatic system is established first34 and then applied for
excitons in fractional dimensional space, 35 and sequentially
generalized.36,37 Stillinger constructed the axiomatic basis for
spaces with non-integer dimension, and gave the form of
Laplacian operator in fractal space. 34 Tarasov suggested a
generalization of vector calculus for the case of non-integer
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dimensional space,37 and gave a solution of heat propagation
in fractal pipe and rodunder cylindrical coordinate.38

Relevant experiments have also been carried to study heat
conduction in fractal media. Rozanova-Pierrat investigated
how the shape of a prefractal radiator may enhance global heat
transfer at short time.39 Cervantes-Alvarez reported the thermal
characterization of plate-like composite samples made of
polyester resin and magnetite inclusions.40

Fig. 1 Schematic illustration of the transient heat conduction
in fractal meta-media, which can be porous, composite,
networked materials, showing a self-affine pattern that a part
of the structure resembles larger entities or the whole structure.
The heat diffusivity is described by the Laplacian operator in
fractional dimension.

In this paper, we use calculus in fractional dimension
to describe transient heat conduction in isotropic fractal
media under specified boundary and initial conditions. For
simplicity, we consider spherically symmetric media space.
The initial temperature distribution in the spherical media is
arbitrary and the boundary temperature keeps constant. We
thus analytically and numerically study the evolution of the
temperature profile, heat flux and excess energy. In
particular, we analytically obtain the non-exponential decay
of the heat pulse diffusion in the fractal media with
randomly distributed absorbing heat sinks. In this case an
optimal dimension exists for faster heat absorption, which
depends on the heat sink concentrations.

However, we have to mention that the mathematical
operators in fractional dimension space may not fully
describe the real fractal media, because the mathematics
here does not maintain the strict self-similarity at all scales.
Nevertheless, it captures the main characteristic of fractal
media in large scale in the sense of effective media. For this
reason, calculus in fractional space can offer us important
insights about the diffusion behavior in the fractal media.
Moreover, when varying dimensions, we consider the case

of constant mass density following the same spirit as
previous. 37,40 Our results and formulas can be readily
extended to the case of varying mass density due to
different arrangements of composite units at different
dimensions.

2. Theory of the Fractal Heat Conduction
In this section, we will provide the basic theory of the heat
conduction in a fractal material. Although Fourier’s law
may break down at nanoscale, 41 throughout this work the
fractal structures of interest are beyond the mesoscopic
level and the unit size of the fractal structure is above the
micrometer, so that Fourier’s law is valid. We consider the
heat conduction in homogenous isotropic media, which is

described by the Fourier’s law: J = -κ∇T, with J the heat
flux vector, κ the thermal conductivity of the medium, T the
temperature as a function of location. The continuous
equation of energy conservation requires the in-out flux
balance:

∮
V
f ( r, t )dV - ∮

S
J ( r, t ) ⋅ dS = ∂∂t ∮V c ρT ( r, t )dV (1)

where f ( r,t ) denotes the intensity of the internal heat

source, c is the heat capacity, ρ is the medium’s mass

density, S and V denotes the surface and volume of the

medium, respectively. As such, ∇ ⋅ q + ρc ∂T
∂t = f ( r,t ).

Considering both the divergence theorem and Fourier’s
law, we arrive at the differential form:

∇2T ( r, t ) - 1
D
∂T ( r, t )
∂t = -ψ ( r, t ), (2)

where ψ ( r,t ) = f ( r,t ) /κ is the source term and D = κ/ (cρ )
has the physical meaning of heat diffusion coefficient. The
Laplacian operator in the fractal dimension can be written
as

∇2 = ∂2
∂r2 +

ds - 1
r

∂
∂r +

∂
∂ϕ ( sin ϕn - 2 ∂∂ϕ )

r2 sin ϕn - 2 +
∂2
∂ϕ2

r2 sin ϕ2
, (3)

where the non-integer ds ≥ 1 denotes the fractional dimension.
This is a very important result cited from F. H. Stilinger’s
original work34 [see also, the Laplace-Beltrami operator].
Stilinger’s work is a very important achievement in the area
of fractal geometry. He establishes an axiomatic system under
the condition that the space’s dimension is a fraction and on
the basement he derives expressions of many basic geometry
quantities such as the length and the volume element. On the
basement he provides the expression of the Laplacian operator
in the fractional dimension space. His results are widely cited
in the papers about the researches of the physical
characteristics in fractal media. For example, his theory to
solve the problem about the light harvesting in a fluctuating
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antenna, 7 Tarasov has referred to his theory to solve the
problem about heat transfer in fractal media,38 and Wei-Ping
Zhong et al. have used his theory to solve the problem about
spatiotemporal accessible solitons in fractional dimensions.42

In view of the fact that the homogenous isotropic
thermal medium is spherically symmetric, all physical
quantities can be represented as scalar functions of the
radius distance, such as T ( r, t ) = T ( r, t ),ψ ( r, t ) = ψ ( r, t ). In

such fractal media, the Laplacian operator can be simplified
to:

∇2 = ∂2
∂r2 +

ds - 1
r

∂
∂r , (4)

Therefore, we can express the general equation for the heat
condition in isotropic fractal media as:

1
D
∂T ( r, t )
∂t = ∂2

∂r2 T ( r, t ) +
ds - 1
r

∂
∂r T ( r, t ) + ψ ( r, t ). (5)

3. Results and Simulations
In what follows, we are going to present analytical formulas
and numerical results for two typical transient diffusion
cases in fractal dimensions: A) Heat diffusion driven by
fixed temperature bias and heat sources; and B) Transient
pulsed heat diffusion with random absorbing sinks.

3.1. Fixed Temperature Boundaries and Heat Sources
Assume the fractal medium boundary is surrounded by heat
sinks at the distance r = R with the fixed boundary
condition T ( r = R, t ) = T0 and the initial temperature profile

T ( r, t = 0 ) = μ ( r ), we can obtain the solution:

T ( r, t ) = T0 +∑
n = 1

∞
2J ds

2 - 1
( ξnr
R
)

r
ds
2 - 1J ds

2
( ξn )2
∫0R [ μ ( r ) - T0R2

e
- ξ

2
n

R2
Dt

+ψ ( r, t )
ξ 2n

(1 - e-
ξ 2

n

R2
Dt ) ] r

ds2 Jds2 - 1
( ξnr
R
)dr, (6)

where ξn is the n-th zero point of the ds /2 - 1 fractional order
Bessel function Jds /2 - 1 ( ξn ) = 0. The first part in the integration

describes the multi-time-scale relaxation from the initial
temperature profile to the fixed boundary temperature due to
the heat diffusion. The second part in the integration denotes
the temperature raising due to the heat source flux.

Therefore, we can calculate the heat flux as a function
of location by making the gradient J ( r,t ) = -κ∇T ( r,t ):

J ( r,t ) =∑
n = 1

∞
2κJds

2
( ξnr
R
) ξn
R

J ds
2
( ξn )2r

ds
2 - 1
∫0R [ μ ( r ) - T0R2

e
- ξ

2
n

R2
Dt

+ψ ( r, t )
ξ 2n

(1 - e-
ξ 2

n

R2
Dt ) ] r

ds2 Jds2 - 1
( ξnr
R
)dr, (7)

As the same, the first flux results from the heat diffusion
due to the temperature difference between the interior
profile and the exterior fixed boundary condition, and the
second one results from the inject heat flux due to the
source term, respectively.

Accordingly, using the hyper-sphere volume Vds
(r ) =

πds /2

Γ (ds /2 + 1 ) r
ds and integrating E = ∫0R c ρTdVds =

∫0R c ρT ( r ) 2πds /2

Γ (ds /2 ) r
ds - 1dr , we can also calculate the

medium’s excess energy, ΔE = E - cρVds (R )T0, as

ΔE =∑
n = 1

∞ 4cρπds
2 R

ds
2 + 1

Γ ( ds2 )J ds2 ( ξn ) ξn
∫0R [ μ ( r ) - T0R2

e
- ξ

2
n

R2
Dt

+ψ ( r, t )
ξ 2n

(1 - e-
ξ 2

n

R2
Dt ) ] r

ds2 Jds2 - 1
( ξnr
R
)dr, (8)

Clearly, the thermal relaxation process is described by
the series of time decay factors exp ( -ξ 2n Dt/R2 ). As such, in

the long time limit, the characteristic time-scale τc of the
heat conduction relaxation is governed by the first term
with the smallest exponent ξ 21, which can be written as

R2

(2 + ds /2 )dsD < τc =
R2

ξ 21D
< R2

2dsD . (9)

Clearly, increasing ds will decrease the characteristic time,
which means larger dimension can promote the heat
diffusion. Note ξ1 (ds ), as the first zero of the Bessel

function Jds /2 - 1, is a function of the fractal dimension ds and

has the theorem43,44:
2

ds (ds + 4 ) <
1
ξ 21
<∑n = 1

∞ 1
ξ 2n
= 1
2ds .

We can compare it with the Brownian random motion of
a single free particle immersed in a thermalized environment
in multi-dimension ds. The mean square displacement (MSD)
increases linearly with time as < x2 >= 2dsDt. When replacing
theMSD < x2 >by the square radius R2, it is clear to see that the
upper bound τc in Eq. (9) is exactly the time for the MSD of the
Brownian particle’s random walk reaching the square radius.
In other words, the diffusion dynamics of heat conduction
under fixed temperature boundaries is faster than the random
diffusion of Brownian particles. This is understandable,
because the former one is essentially a nonequilibrium process
driven by external fields, including both theheat sources and
temperature boundary conditions with inherent thermal bias,
while the latter process is essentially an equilibrium under a
uniform thermalized environment with no temperature bias.

© Engineered Science Publisher LLC 202058 | ES Energy Environ., 2020, 7, 56-64

ES Energy & EnvironmentResearch Paper



Therefore, the latter Brownian diffusion is slower with a larger
time scale as the upper bound of the time scale of former heat
diffusion.

Fig. 2 Transient heat conduction driven by temperature
difference (a)(b)(c) or heat source (d)(e)(f). For conduction
driven by temperature difference: (a) Plots of the temperature
evolution T (r, t ) - T0 at r = 0.6 m; (b) Plots of the density

evolution of the heat flow q (r,t ) at r = 1 m; (c) Plots of the

excess energy decay ΔE (ds,t ). Dimension ds increases from 1

to 3 with increment of 0.4 in the direction of the arrow.
Parameters are 1/D = 8.1× 103 s/m

2
, R = 1 m, κ = 518.52W/

(m
ds - 2 ⋅K), c = 4.2 × 103 J/(kg⋅K), ρ = 103 kg/m

ds, μ (r ) =
300 K, T0 = 100K, ψ (r,t ) = 0. For conduction driven by heat

source: (d) Plots of the temperature evolution T (r,t ) - T0with

r = 0.6 m; (e) Plots of the density evolution of the heat flow
J (r,t ) with r = 1 m; (f) Plots of the incremental energy

ΔE (ds, t )Dimension ds increases from 1 to 3 with increment

of 0.4 in the direction of the arrow, where μ (r ) = T0 = 100 K,

ψ (r,t ) = 103 K/m
ds - 1. Other parameters remain the same.

In the following, we will present the associated
numerical calculations. Figs. 2(a) (b) (c) plot the transient
heat conduction only driven by temperature difference in
the absence of heat source ψ ( r ) = 0. The media of larger

dimension ds can promote the heat propagation, so as to
dissipate energy faster [see Fig. 2(a)]. This leads to smaller
temperature gradient so as smaller heat flux density on the
boundary of the media, as shown in Fig. 2(b). As shown in
Fig. 2(c), ΔE also decreases faster as ds increases. This is
intuitively because higher dimension means each physical
site has more neighbors so that the propagation has more
paths to spread out, more efficient and easier.

Figs. 2(d)(e)(f) plot the transient heat conduction only

driven by heat sources ψ ( r,t ) ≠ 0. In other words, this case

assumes that at the initial moment, the temperature in the
media is the same as that in the exterior boundary, which
means the uniform heat source exists to persist μ ( r ) = T0.
From Fig. 2(d), we see that although with a lower saturated
temperature, the temperature saturates faster in media of larger
dimensions ds. This indicates that the larger ds can promote the
faster heat conduction. As ds increases, since the temperature
saturates faster to a lower value, the temperature gradient on
the boundary is smaller so that the heat flux density is smaller
on the boundary of the media [see Fig. 2(e)]. The behaviour of
ΔE is more complicated. From Eq. (8), we see that at a short

time, the change rate of ΔE is proportional to
πds /2Rds

2dsΓ (ds /2 ).
While in the long time limit, the saturated ΔE is proportional

to
πds /2Rds + 2

(ds + 2 )d2s Γ (ds /2 ). (We used∑n = 1
∞ 1
ξ 4n
= 1
2d2s (ds + 2 ) in

Ref. [45].) Correspondingly, as shown in Fig. 2(f), the change
rate of ΔE increases as ds increases, although the saturated ΔE
decreases.

3.2. Pulsed Heat Diffusion with Random Absorbing
Sinks
It is worth noting that many subjects, such as life science and
material science, have came across a similar problem: how to
get the temperature profile and energy evolution when an
initial heat pulse is excited in a fractal medium. That is to say,
at the initial moment, the temperature focused at an spot is
much higher than the other part of the media, and may be
described by a Dirac delta function. For example, when a
cancer tissue has been hit by the focused gamma ray beams, a
spot of the cancer tissue can be at a very high temperature. If
we can get the temperature profile and energy evolution in the
cancer tissue, it will help to adjust the beam intensity or other
parameters to achieve the goal of killing the cancer tissue.
(Here is a document aboutusing gamma ray knife to treat
cancer.46) Heat pulse excitation is also applied to materials to
detect their intrinsic thermal diffusion and conductivity
properties.

This kind of problem is a specific form of the general
problem we have risen above but if we take the Dirac delta
function directly into the formula Eq. (6), we may not get the
final result simply. So we use different scenario and
mathematical methods to deal with this problem: apply a heat
pulse to the center of a fractal sphere of uniform temperature,
which may dissipate if introducing the distributed absorbing
heat sinks.

Assume the heat pulse takes the form of Gaussian
distribution Tpexp ( -πr2 /a2 ) with Tp a high temperature.

When the length scale a is small enough, the heat pulse may
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be rewritten as Tpa ( exp ( -πr
2 /a2 )

a
) = Tpaδ ( r ), as a Dirac

delta function. Therefore, denoting T0 the initial ambient
temperature and the fixed temperature of heat sinks
surrounding the fractal sphere boundary, the initial
condition and boundary condition are given by T ( r,t = 0 ) =
T0 + Tpaδ ( r ) and T ( r = R,t ) = T0.

The temperature profile evolution under a heat pulse
can be solved in an analytical form by setting ψ ( r,t ) = 0 in

Eq. (6), expressed as

T ( r,t ) = T0 +∑
n = 1

∞

Cn r
1 - ds2 J ds

2 - 1
( ξnr
R
)e-

ξ 2n
R2
Dt. (10)

The amplitude Cn is given by

Cn = Tpa
ds

πR2J ds
2
( ξn )2 ( )ξn

2πR
ds
2 - 1, (11)

with an omitted factor e
- ξ

2
n a
2

4πR2 ≃ 1 for small a ≪ R. The heat
flux profile evolution is obtained accordingly:

J ( r,t ) =∑
n = 1

∞

Cn κ
ξnr

1 - ds2

R
Jds /2 ( ξnrR )e-

ξ 2n
R2
Dt

(12)

By integrating the distribution of temperature profile over

the whole volume Vds (R ) = 2πds /2

dsΓ (ds /2 ) R
ds of the fractal

sphere, we obtain the excess energy dwelling in the fractal
medium at time t:

ΔE ( t ) = E - cρVdsT0 = 4cρadsTp
2 ds2 Γ ( ds2 )

∑
n = 1

∞ ξ
ds
2 - 2
n

J ds
2
( ξn ) e

- ξ
2
n

R2
Dt. (13)

As expected, this solution represents the kinetics of the
excess energy injected by the heat pulse that decays from
the initial one ΔE ( t = 0 ) = cρadsTp, with a dwelling fraction

fE ( t ) = ΔE ( t ) /ΔE (0 ) at time t.
Therefore, the characteristic decay time of the heat

pulse’s energy can be calculated to a simple expression:

τ = ∫0∞ d tfE ( t ) = 4R2
2 ds2 DΓ ( ds2 )

∑
n = 1

∞ ξ
ds
2 - 4
n

J ds
2
( ξn ) =

R2

2dsD . (14)

Surprisingly, this decay time of the heat pulse’s energy
conducting in the fractal medium is just equal to the
diffusion time needed for the Brownian random walk in this
medium to reach the distance R.

We note this observation does not conflict with the
previous one [see Eq. (9) and associate discussions] where
the nonequilibrium conduction is faster than the equilibrium
diffusion. Here, the decay time is for the heat pulse that was
excited approximately as a Dirac delta function, which
makes the nonequilibrium process well described by the

linear response theory, see Ref. [47]. And as is well known,
in the linear response the nonequilibrium properties have
connections to the equilibrium properties, such as the
equivalence between heat conduction and diffusion, 47 the
connection between nonequilibrium transport coefficients
and equilibrium flux autocorrelations in Green-Kubo
formula. 48 Thus, it is reasonablethat the decay time of the
heat pulse is equal to the diffusion time of a Brownian
motion in the fractal medium.

So far, we have discussed the free heat diffusion in an
unperturbed way in a fractal ds-dimensional hyper-sphere of
radius R (so as volume Vds) with no additional absorbing

boundaries inside the medium. In reality, the medium
interior could have thermal radiation spots or heat sinks
randomly distributed as absorbing boundaries of thermal
energy. Therefore, we assume that the heat sink distribution
follows Poisson statistics, so that the probability to obtain
no absorbing sinks inside (but on the boundary of) volume

Vds is given by p (Vds ) = Ce-CVds, where C is the concentration

of absorbing heat sinks. By taking into account all possible
routes of the heat pulse diffusion, we calculate the mean
excess energy of the heat pulseremaining in the medium by
averaging the dynamics above [see Eq. (13)] over different
realizations of Vds, written as:

- ---ΔE ( t ) = ∫0∞ p (Vds )ΔE ( t,R (Vds ) )dVds. (15)

In the long time limit t→ ∞, the decay dynamics of heat
pulse’s energy is governed by the first term of the series
(contains ξ1 only), which with the slowest decay dominates
the asymptotic behavior. Thus, we can apply the Laplace’s
method, orsay, the saddle-point approximation, to obtain the
asymptotic

- ---ΔE ( t ) ≃ Ads ( )C
2
ds Dt

ds
2ds + 4

e
-Bds

æ

è

ç

ç
çç

ö

ø

÷

÷
÷÷C

2
ds Dt

ds
ds + 2

, (16)

where Ads and Bds
are coefficients given by Ads

=

23 - ds2 cρadsTp [ ]πds + 1 ξ ds
2 /2 - 4

1 /Γ (ds /2 )ds + 3
1

ds + 2

2 + ds Jds /2 ( ξ1 )
, Bds =

2 + ds
ds

é

ë
êê

ù

û
úú

( ξ1 π )ds
Γ (ds /2 )

2
ds + 2

. This asymptotic form clearly shows

a non-exponential decay behavior. More importantly, the time-
dependent decay behavior depends mainly on two
undetermined parameters: the dimension of the fractal medium
ds and the concentration of absorbing heat sinks C, with
thermal diffusivity D just rescaling the time, which all can be
fitted out from the time-dependent experimental measures.

Similarly, taking into account all possible routes of the
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heat pulse diffusion, we calculate the mean decay time by
averaging over the probability distribution of Vds, as:

-τ = ∫0∞ dVds

p (Vds

) ∫0∞ d tfE ( t ) = Γ (
2
ds
)Γ (1 + ds2 )

2
ds

πd2s DC
2
ds

. (17)

The same, by measuring the average decay time for
different heat sink concentration C, we can also fit out the
fractal dimension ds and the thermal diffusivity D. It is
worth noting that

-τ has a nontrivial dependence on
dimension for difference C. For example, only at small C,
increasing ds will decrease the decay time, which means
larger dimension can promote the heat diffusion; while at
large C, things are reversed.

Fig. 3 Heat pulse diffusion with random absorbing sinks in
fractal media. (a) (b) Plots of

- ---ΔE (t ) from Eq. (16) for C =
30/mds and C = 100/mds, respectively, show complicated
dimension dependences. Dimension ds increases from 1 to 3
with increment of 0.4 indicated by the arrow direction; (c)
Plots of the mean decay time

-τ (ds ) from Eq. (17) with C =
2/mds in upper dot black line, 3/m

ds in middle solid red line,

4/m
ds in lower dash blue blue; (d) Optimal dimension ds

with minimal decay time for efficient heat absorption. T0 =100 K, ψ (r,t ) = 0, Tp = 103 K, a = 0.01 m. Other

parameters are the same as before. Note, we limit ds

between 1 and 3, considering reality.

Also, we present here the associated numerical
calculations. For the case of pulsed heat diffusion, the
temperature evolution T ( r,t ) - T0 and the density evolution of

the heat flow J ( r,t ) show similar behaviors as those in Figs. 2

(a) (b). The excess energy decay ΔE (ds,t ) is faster as ds
increases. Therefore, we do not show them here repeatedly. For

the heat pulse with random absorbing sinks, we plot the
numerical results of

- ---ΔE ( t ) and
-τ (ds ) in Fig. 3, by applying

sharp Gaussian pulse with Tp = 103 K and a = 0.01m. Figs. 3
(a)(b) show clearly the non-exponential behaviors of the mean
excess energy decay

- ---ΔE ( t ) for heat sink concentration C =
30/mds and C = 100/mds, respectively. They have very
complicated dimension dependences, as we can see from
Eq. (16) .

The mean decay time
-τ, [see Eq. (17)], also has a

nontrivial dependence on ds, which is affected by the
concentration C of absorbing heat sinks. When C is relatively
large,

-τ increases as ds increases,as the dash line in Fig. 3(c).
When C is relatively small,

-τ decreases as ds increases, as the
dot line in Fig. 3(c). If C is set to be an intermediate value in
the middle, then

-τ is allowed to obtained a minimal value with
an optimal dimension ds, where the heat absorption is more
efficient, see the solid line in Fig. 3(c) with enlarged view in
the inset. The optimal ds is depicted in Fig. 3(d), which
indicates that at intermediate C, the optimal dimension for
efficient heat absorption is closed to the solid line. At lower
sink concentrations, the larger dimension (ds → 3) the better,
while at higher sink concentrations, the lower dimension
(ds → 1) the better.

4. Discussions
As we have noted in the beginning, the fractal structures
studied at present are beyond the mesoscopic level and the
unit size of the fractal structure is above the micrometer
instead of at nanoscale, so that Fourier’s law is valid. To
include the non-Fourier cases, one can generalize the master
equation 2 (without loss of generality, we omit the source

term):
∂T
∂t = D∇2T ( r,t ) with constant heat diffusion

coefficient D = κ/ (cρ ) to a non-Markov diffusion equation

with memory:

∂T ( r,t )
∂t = ∫0t K ( t - t')∇2T ( r,t')dt'. (18)

The retarded function K ( t ) is called the memory kernel, which

plays the important role in diffusion dynamics so that the future
will not only depend on the present state but also on the history.
Some special kernels will lead to familiar equations as follows:No memory:K ( t ) = 2Dδ ( t ),

Diffusion equation: ∂T ( r,t )∂t = D∇2T ( r,t ); (19)

Full memory:K ( t ) = v2sΘ( t ),
Ballistic wave equation: ∂2T ( r,t )∂t2 = v2s ∇2T ( r,t ); (20)

Decaying memory:K ( t ) = v2s e-v2s t/D,
1
v2s

∂2T ( r,t )
∂t2 + 1

D
∂T ( r,t )
∂t = ∇2T ( r,t ). (21)
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A completely no memory kernel K ( t ) ∼ δ ( t ) leads to the

normal diffusion process, while a full memory of the history
K ( t ) ∼ Θ( t ) gives the ballistic wave equation. In between,

the decaying memory kernel leads to the telegraph equation
that combines the diffusion and ballistic wave equation. By
applying the fractional dimension Laplacian operator ∇2 =
∂2
∂r2 +

ds - 1
r

∂
∂r , we can generalize the present discussions

to the general diffusion process with non-Markovian
memory kernels.

So far, we restricted ourself to the constant diffusion
coefficient D = κ/ (c ρ ). We tried to fix the diffusion constant

to merely see the pure dimension effect from varying ds. This
kind of scheme also follows the treatment in Refs. [38,40],
where they also consider the mass density ρ, thermal

conductivity κ, and so as diffusion coefficient D as a constant,
when dealing with the problem about heat conduction in fractal
media. Nevertheless, we need to note that in general the
properties κ, c, ρwill have rich dependences on the dimension

ds. Once the explicit dimension dependence is known, we can
replace those constants as functions of ds, to see more rich and
complicated heat conduction behavior in fractional dimension.

Moreover, given spatial dependent system parameters,
the fractional dimensional diffusion equation with different
memory kernels, can be straightforwardly applied to the
transformation thermodynamics, 1 to design the transformed
thermal cloaking, camouflage and so on, with fractional
dimensions and anomalous non-Fourier thermal behaviors.

5. Conclusion
In this paper, we have described the transient heat conduction
in fractal media in the framework of calculus in fractional
dimension space. We have studied the influence of dimension
to the evolution of the temperature distribution, the density of
the heat flux and the excess energy, and several examples are
analyzed to illustrate the results. We have found that in general
larger dimension can promote heat propagation, but may with
a complicated dependence on the system parameters. A special
case for the heat pulse has been considered. With randomly
distributed heat sinks in the media, we have obtained a non-
exponential decay behavior of the excess energy, and the time-
dependent decay behavior depends mainly on two
undetermined parameters: the dimension of the fractal medium
ds, and the concentration of absorbing heat sinks C. At lower
sink concentrations, the large dimension promotes the heat
absorption, while at higher sink concentrations, the lower
dimension the better. An optimal dimension for efficient heat
absorption emerges for intermediate C. By experimentally
measuring the time-dependent kinetics, one may fit out the
dimension of the fractal medium ds, the concentration of
absorbing heat sinks C, and the thermal diffusivity D.

Our results may have implications in material science,
life science and medical science to describe transient heat
conduction in fractal media like porous media, living tissue
and composite. We hope they can be used to guide the
design of thermal device, controlling transient heat
conduction in ubiquitous fractal media, such as porous,
composite, networked materials.

Appendix
5.1. The Simple Derivation of the General Solution

The heat diffusion in the fractal medium is expressed as:

1
D
∂T ( r, t )
∂t = ∂2

∂r2 T ( r, t ) +
ds - 1
r

∂
∂r T ( r, t ) + ψ ( r, t ). (22)

Suppose that this problem’s boundary conditions and initial
conditions are T ( r, t = 0 ) = μ ( r ), T ( r = R, t ) = T0. Separate

this temperature in its mathematical form T = T1 + T2 + T0,
for the T1 and T2, the following equations are satisfied
respectively:

( )∂2
∂r2 +

ds - 1
r

∂
∂r T1 -

1
D
∂T1
∂t = 0, (23)

( )∂2
∂r2 +

ds - 1
r

∂
∂r T2 -

1
D
∂T2
∂t = -ψ ( r,t ). (24)

The T1,T2 satisfy the following initial conditions and
boundary conditions respectively: T1 ( r,t = 0 ) = μ ( r ) -
T0,T2 ( r,t = 0 ) = 0 ; T1 ( r = R, t ) = 0, T2 ( r = R, t ) = 0.

We solve the first equation by using the variable
separation T2 ( r,t ) = R2 ( r ) f2 ( t ), then we get these two

eigenvalue equations:

d2R2
dr2

+ ds - 1
r

dR2
dr
+ λ2R2 = 0, (25)

df2
dt
= -λ2Df2. (26)

Because of the boundary condition, we can confirm that the
eigenvalue-related parameter λ we introduce above, is

λn = ξnR , (27)

where ξn is the nth zero point of the (ds /2 - 1 ) order Bessel

function Jds /2 - 1 = 0. Solve all the equations, then we get the

general solution of the first equation:

T1 ( r,t ) =∑
n = 1

∞ [ AnJ
|1 - ds2 |

(λnr ) + BnJ- |1 - ds2 |
(λnr ) ]

×r1 - ds2 e-λ2nDt, (28)

For the second equation, we use impulse theorem to
solve it. As people often do in solving this kind of typical
mathematical physics problems, we suppose that:

T2 ( r,t ) = ∫0t v1 ( r,t ; τ )dτ. (29)

What the equation v1 satisfies is very similar to what the
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equation T1 satisfies, so we can easily write down its
general solution. Then we make an integral, and can write
down the the general solution of T1:

T2 ( r,t ) =∑
n = 1

∞ [CnJ
|1 - ds2 |

(λnr ) + DnJ- |1 - ds2 |
(λnr ) ]

×r1 -
ds2 1
Dλ2n

(1 - e-λ
2
nDt ). (30)

Considering the initial conditions, we can finally write
down the special solution of T = T0 + T1 + T2, with

T1 =∑
n = 1

∞
2e-

ξ 2n D
R2

t
J ds
2 - 1
( ξnr
R
)

r
ds
2 - 1J ds

2
( ξn )2

×∫0R μ ( r ) - T0R2
r
ds
2 J ds

2 - 1
( ξnr
R
)dr

T2 =∑
n = 1

∞
2(1 - e-

ξ 2n D
R2

t )J ds
2 - 1
( ξnr
R
)

r
ds
2 - 1J ds

2
( ξn )2 ξ 2n

×∫0Rψ ( r,t ) r ds2 J ds2 - 1 ( ξnrR )dr

which is exactly the Eq. (6). Then we can calculate the heat
flux by means of making a differential [see Eq. (7)], and
calculate the energy by making an integral [see Eq. (8)].

5.2. The Saddle-Point Method to get the Asymptotic
Result
In order to get the result of the

- ---ΔE ( t ) [see Eq. (15)], we use

a mathematical method called saddle-point method.
Because the dominate factor that influences the asymptotic
result of the integral is the first term of the series, so we can
calculate only the first term, and use the result to
approximate the accurate result. We can provide the
concrete form of the integral formula:

- ---ΔE ( t ) = 8Cπds
2 ( ξ1 )

ds
2 - 2

2 ds2 [Γ ( ds2 ) ]2J ds2 ( ξ1 )

×∫0∞ e
-( ξ1
R
)2Dt - Cπ

ds
2 Rds

Γ (1 + ds2 ) Rds - 1dR (31)

Then we suppose that α = ( ξ1 )2Dt, β =
Cπ

ds
2

Γ (1 + ds2 )
, then the

integral (excluding the coefficient) can be written as

∫0∞Rds - 1 e- αR2 - βRdsdR = ∫0∞ g (R ) xp [ zh (R ) ] dR. In this

formula, g (R ) = Rds - 1, h (R ) = - α
R2
- βRd

s .

Suppose that

f ( z ) = ∫0∞ g (R )ezh(R )dR. (32)

By using steepest descent method, we can know that if R is
always a real number, the f ( z ) can be approximated by the

beneath expression: 49

f ( z ) ∼ i 2π
zh'' (R0 ) g (R0 )exp [ zh (R0 ) ] . (33)

In the present circumstances, z = 1, then the integral’s

approximate expression is i
2π

h'' (R0 ) g (R0 )exp [ zh (R0 ) ].
The R0 in the formulas is the zero point of the function

∂h (R ) /∂R = 0. In this problem it is R0 = ( 2αβds )
1

2 + ds. We can

substitute this result in the approximate expression of the
integral, then we can get:

f (1 ) ∼ π
α (2 + ds ) (

2α
βds

)
ds + 1
ds + 2 exp [ -β 2 + ds2 ( 2α

βds
)

ds
ds + 2 ] .

(34)

Then we substitute the coefficient and the concrete
expression of α and β in the above formula, and we get the

result Eq. (16) in the main text.
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