-

Z SYS T E M Solutions for Embedded Systems Development v9.9.86

Technical Notes

NEC 78K Family In-Circuit Emulation

Contents
COMEEIILS ...ttt ettt ettt bt et s bt st s a e st e st s bt e ettt sa e eatesseab e eh e et e s e bt e bt esbesh e beennenbesneennesaesueenn 1
1 TIHTOQUCTION .ttt ettt ettt b et e bt e e e be bt ehe e st e bt sbeebe e bt sbe bt ensenbesbeeanenaesbeeas 2
1.1 Differences from a standard eNVIFONMENLccevverieririieieniiieniete ettt st eneenees 2
1.2 Common GUIAEIINES......c..cotiieiiiiieiieieiiieetetect et st st s sre st sae et e eaneenees 2
2 Emulation OPONS.cciitiiieiiiiiiieieiiit ettt sttt st e st 3
2.1 Hardware OPHONScccciiiiiiiiiiiiiecieceeseete ettt st st saa 3
2.2 CPU CONTIGUIALION ..eutiiiiiiniiiiieetieeite ettt ettt ettt ettt et e sb et ebteeateebbe e bt e sbeesbeesaeesaeesabesabesnbeebeenne 4
2.3 Power Source and CLOCKcc..coiiiiiiiiiiiiiiiiece ettt et ettt e s 5
2.4 InitialiZation SEQUENCEccueuieuiriirieeieiieieteiieiete ettt sttt e e e st b e st eae s ess e nesnens 6
3 SEttiNG CPU OPLIONS ..coueeiiiiiiieitietie ettt ettt ettt ettt sttt et et et e sbtesb et ehee e bt enae e bt e saeesseesatesabesnbeenbeenne 8
3.1 CPU OPHONS «.enviiieieitieiteete ettt sttt ettt eb et bttt eae e s b s bt e st e sbesaeessesaesaeesae st saeeatenneaneereen 8
3.2 DebUZZING OPLIONS ..cuveeuiiiniiiiieeiiieiie et st estee st et e st ste et e bt e bt et e b et sheeeateebbeenteesseesbeesaeesseesabesabesbeeneenne 9
3.3 AdVANCEA OPLIONS ..ottt ettt ettt ettt st et b e bt e bt b et eat e esbe e st e e sbeesate st e sabeebeenees 10
4 MEIMOTY ACCESS ..envteuieiieete ettt ettt ettt et eat e ea e steesh et st e e ate e be s bt e bt e b te bt e bt e ea b e s bt ea b e eabeeebeesbeesatesatesane e beennes 11
5 ACCESS BIEAKPOINLS ...ttt et e et 12
6 GENG STATTE.ceiuiiiiiiiiiieiiei et ettt st et st 14
T THACE ettt ettt et h bbb a et ae b e s he b e bt e bt e nesaesaeeanen 14
8 EXCCULION COVEIAZE. . cueeiutieuiietee ittt ettt ettt e stt et sttt et et e bt ettt ehteebt e et e e sbeeebeesatesabeeabeeabeesbeebeesanenneens 15
O ACCESS COVEIAZE ..cuviiviiiiiiiitiiiieii et s b e sa s b e sa et sas s sa e s eanes 17
10 EXECULION PrOfIlET.....oviiiiiiiiiiiiiiciiii e et 18

© iSYSTEM, May 2009 1720

1 Introduction

The NEC 78K development system is built around a powerful FPGA, which contains the 78K0 core and all the
necessary debug logic in order to control the core and the peripherals. CPU peripherals are emulated by the 78K0
CPU (umbrella device), which contains all peripherals of the devices being emulated. The CPU is configured
specific to every target CPU being emulated.

Note: The description in this document applies for the 78K0 ActivePRO PODs and does not apply for the old
78K0 Power PODs.

Debug Features

e Unlimited execution breakpoints

® Access breakpoints

e 512KB overlay emulation memory
® Real-time access

e Fail-safe exceptions

* Trace

e Execution & Access Coverage

e Profiler

1.1 Differences from a standard environment

As soon as the POD is inserted in the target instead of the CPU, electrical and timing characteristics are changed.
Different electrical and timing characteristics of used elements on the POD and prolonged lines from the target
to the CPU on the POD contribute to different target (the whole system) characteristics. Consequently, signal
cross-talks and reflections can occur, capacitance changes, etc.

Beside that, pull-up and pull-down resistors are added to some signals. Pull-up/pull-down resistors are required
to define the inactive state of signals like reset and interrupt inputs, while the POD is not connected to the target.
Because of this, the POD can operate as standalone without the target.

1.2 Common Guidelines
Here are some general guidelines that should be followed:

e Use external (target) Vcc/GND if possible (to prevent GND bouncing).

e Make an additional GND connection from the development system (iC3000HS) to the target to protect the
emulator from being damaged due to different target and emulator ground potentials, at the time when the
POD is plugged into the target.

© iSYSTEM, May 2009 2/20

2 Emulation Options

2.1 Hardware Options

Emulation Options

Hardware | CPU | Veo/Clack | Iniialization | JTAG | Synchronization |

Ermul atiar ke
0] 256 Eptes

1 Epte

W Clear Emulation Memang |44 HEX

= Errirn Tranget miode

Shadow Memaony
¥ | [Uze fon realtime aceess, ifavaiable

Sddiess: |3FE S =

Aceess (%) Bt 00 1|Ehi

Q. I Cancel

In-Circuit Emulator Options dialog, Hardware page

Clear Emulation Memory

This option allows you to force clearing (with the specified value) of emulation memory after the emulation unit

is initialized.

Clearing emulation memory takes about 2 seconds per megabyte, so use it only when you want to make sure that
previous emulation memory contents don't affect the current debug session.

© iSYSTEM, May 2009

3/20

2.2 CPU Configuration

With In-Circuit emulation besides the CPU family and CPU type the emulation POD must be specified (some
CPU's can be emulated with different PODs).

Emulation Options Ei |

Hardware CFPU |I'\I'ICCJ'I|:|EICkI Initializationl JTAG I Synchronizationl

Earnily PODACARDATAG CPL
MEC 73k j k0 R PO7E0TM j

PO720102
7RK.0/Kn2 PO7a0103
| PO7A0111
N
SetDefault | FO70115
FO7a0114
Initial Endian ILittIe "I Eg;gg%;
PO7E0 23 j

Custorn CPL wariant

f(default) ¥
ak I Cancel | Help |

CPU Setup...

In-Circuit Emulator Options dialog, CPU Configuration page

CPU Setup

Opens the CPU Setup dialog. In this dialog, parameters like memory mapping, bank switching and advanced
operation options are configured. The dialog will look different for each CPU reflecting the options available for
it.

Set Default

This button will set default options for currently selected CPU. These include:
e Vcc and clock source and frequency

e Advanced CPU specific options

Note: Default options are also set when the Family or a POD is changed.

© iSYSTEM, May 2009 4/20

2.3 Power Source and Clock

The Vcc/Clock Setup page determines the CPU's power and clock source.

Emulation Options |

Hardwarel CPU “eco/Clack | Initializatiunl JTaG I S_I,Inu:hru:unizatiu:unl

— LClock. — Yoo Source
0 InternaE Freguency: {15000 kHz % |ntemnal
" Extemal ™ Extemal

Advatized)., | — Wee Vaoltage
O
e

Qk. I Cancel Help

In-Circuit Emulator Options dialog, Vcc/Clock Setup page

Note: When either of these settings is set to External, the corresponding line is routed directly to the CPU from
the target system.

Clock Source

Clock source can be either used internal from the emulator or external from the target. It is recommended to use
the internal clock when possible. When using the clock from the target, it may happen that the emulator cannot
initialize any more.

It is dissuaded to use a crystal in the target as a clock source during the emulation. It is recommended that the
oscillator be used instead. Normally, a crystal and two capacitors are connected to the CPU's clock inputs in the
target application as stated in the CPU datasheets. A length of clock paths is critical and must be taken into
consideration when designing the target. During the emulation, the distance between the crystal in the target and
the CPU (on the POD) is furthermore increased, therefore the impedance may change in a manner that the crystal
doesn't oscillate anymore. In such case, a standalone crystal circuit, oscillating already without the CPU must be
built or an oscillator must be used.

Note: The clock frequency is the frequency of the signal on the CPU's clock input pin. Any internal manipulation
of it (division or multiplication) depends entirely on the emulated CPU.

Vee Source

Determines whether Emulator or the target system provides power supply for the CPU.

© iSYSTEM, May 2009 520

2.4 Initialization Sequence
Typically, there is no need to use the initialization sequence on an In-Circuit Emulator, especially when the

emulated target CPU is a single chip CPU. Primarily, the initialization sequence is used on On-Chip Debug
systems to initialize the CPU after reset to be able to download the code to the target memory.

Besides enabling a disabled memory access upon reset, the initialization sequence can be used for instance to
disable the CPU internal watchdog being active after reset or to modify any other CPU registers, when it’s
preferred to run the application with the modified CPU reset state.

The initialization sequence can be set up in two ways:

1. Set up the initialization sequence by adding necessary register writes directly in the Initialization page
within winIDEA.

Emulation Options Ei |

Hardwarel CPU I Yoo/Clook Initialization |JT.-'1'~I3 I Synchronizatinnl

| nitialization Ilnit FEQUENCE j |3 secar|E|
™ Load from file I J
Address offset | Speciy |0 HE

[Reset CPU after DLAreset commands [invalidates initialization)

Area |Address | Register |Data

Phyzical FFEF WTh 1F ;I Add... |
Properties. .. |
LI b Remove |

(] 4 I Cancel | Help |

2. winIDEA accepts initialization sequence as a text file with .ini extension. The file must be written
according to the syntax specified in the appendix in the hardware user’s guide.

Excerpt from the sample D78 KF0547.1ini file:
S WTM B 0x1F //comment

© iSYSTEM, May 2009 6/20

Emulation Options |

Hardwarel CPU I Weo/Clock Initialization |.JT.-’-‘-.I3 I Synchrnnizatiunl

| ritialization Ilnit FEQUENCE j I'I secomE|
W Laad from file ID?BKFDE#?.ini J
Address offset | Specify | |o HEX

[Feset CPU after DLAreset commands [invalidates initialization)

Area | &ddress | Reqister |Data

=

Y

Eraperties...

-

[~
0k I Cancel | Help |

i

Hemove

The advantage of the second method is that you can simply distribute your .ini file among different workspaces
and users. Additionally, you can easily comment out some line while debugging the initialization sequence itself.

There is also a third method, which can be used too but it’s not highly recommended for the start up. The user

can initialize the CPU by executing part of the code in the target ROM for X seconds by using 'Reset and run for
X sec' option.

Emulation Options Ei |

Hardwarel CPU I Yoo/Clook Initialization |JT.-'1'~I3 I Synchronizatinnl

| nitialization IHESEl target, Run... j |3 zecand(z]
™| Laad framitie I J
Address offset [Speciy ~||o HE

[Reset CPU after DLAreset commands [invalidates initialization)

Area |Address | Register |Data

-

Y

Eroperties...

|

.

LI HEemnye

Q. I Cancel |

T
o
=]

© iSYSTEM, May 2009 720

3 Setting CPU options
3.1 CPU Options

The CPU Setup, Options page provides some emulation settings, common to most CPU families and all
emulation modes. Settings that are not valid for currently selected CPU or emulation mode are disabled. If none
of these settings is valid, this page is not shown.

CPU Setup |

Dptiors |Del:uugging| .ﬁ.dvancedl

— Optiohz
™| EESET Eram Tiarget Enatled
= Al Bratled siten Stopped
[™ dnterupts Enabled When Stopped
I | Hard Irtermupt Mizatle bker Stopped
[Stop CPU &ctivities When Stopped
7| Test Made
T | Eache downloaded code onli (@i met [oadlte target]

QE. I Cancel Help

CPU Setup, Options page

Interrupts Enabled When Stopped

The emulator itself doesn’t support servicing interrupts while the application is stopped (interrupts in
background). Setting of this option impacts only the CPU behaviour during the debug single step execution.

Default disabled option makes the emulator to mask the interrupts while the source step debug command is being
executed, which yields more predictive behaviour in case of the application using interrupts. Interrupts are
disabled through the IE flag in the PSW register hidden from the user.

If this option is enabled, the emulator doesn’t mask interrupts and they can occur while stepping through the
application. If there is a periodic interrupt, it may happen that the user will keep re-entering the interrupt while
stepping. In such applications, it’s recommended to disable this option.

Stop CPU Activities When Stopped

When the option is checked, all internal peripheral modules, like timers and counters, are stopped when the
user's program is stopped. Otherwise, timers and counters remain running while the program is stopped. Usually,
when the option is checked, the emulation system behaves more predictable while stepping through the program.
While being aware of the consequences, it is up to the user whether the option is checked or not.

© iSYSTEM, May 2009 8/20

3.2 Debugging Options
CPU Setup |

Options ~ Debugging | Advanced |

Execution BP= I Hardware j

Cancel Help

NEC 78k Family Debugging Options

Execution Breakpoints
Hardware Breakpoints

Hardware breakpoints are breakpoints that are already provided by the CPU. The number of hardware
breakpoints is limited to sixteen. The advantage is that they function anywhere in the CPU space, which is not
the case for software breakpoints, which normally cannot be used in the FLASH memory, non-writeable memory
(ROM) or self-modifying code. If the option 'Use hardware breakpoints' is selected, only hardware breakpoints
are used for execution breakpoints.

Note that the debugger uses execution breakpoints hidden from the user when executing the source step debug
command. A single execution breakpoint is sufficient to implement the source step for almost all supported CPU
families. NEC 78K microcontroller is an exception to this rule. In worst case, the debugger can use all 16
available hardware breakpoints in order to carry out the source step and thus leaving non to the user. In contrary,
when all available hardware breakpoints are used as execution breakpoints, the debugger may fail to execute the
source step. Software breakpoints should be used if the user finds this too annoying.

Software Breakpoints

Available hardware breakpoints often prove to be insufficient. Then the debugger can use unlimited software
breakpoints to work around this limitation.

When a software breakpoint is being used, the program first attempts to modify the source code by placing a
break instruction into the code. If setting software breakpoint fails, a hardware breakpoint is used instead.

Note: It is recommended to use unlimited software breakpoints since the 78K emulator provides RAM overlay
memory for the complete code area.

© iSYSTEM, May 2009 9/20

3.3 Advanced Options

CPU Setup |

Options | Debugging Advanced |

Target RESET enable
[POC rezet. Detection voltage: Ypoc =i I 1.6 j
[T Target reset

¥ Device internal reset

ak. I Cancel Help

NEC 78k Advanced Options

Target RESET enable

The NEC 78k emulation system allows different target RESET options which can individually be defined in this
dialog. Also, a POC reset comparator is available, for which the voltages can be specified between 1.6V and
2.7V.

© iSYSTEM, May 2009 10720

4 Memory Access

NEC 78k development tool features standard monitor memory access, which require user program to be stopped
and real-time memory access based on a shadow memory, which allows reading the memory while the
application is running.

Real-Time Memory Access

The emulator features dual-port memory for the complete 78K0 memory space except for the SFR area, which is
covered by the shadow memory. This allows all memory to be read and write in real-time without intrusion on
the application execution, except for the SFRs, which can only be read in real-time.

Monitor Access

When monitor access to the CPU’s memory is requested, the emulator stops the CPU and instructs it to read the
requested number of bytes.

Since all accesses are performed using the CPU, all memory available to the CPU can be accessed. The
drawback to this method is that memory cannot be accessed while the CPU is running. Stopping the CPU,
accessing memory and running the CPU is an option, which, however, affects the real time execution
considerably.

The time the CPU is stopped for is relative and cannot be exactly determined. The software has full control over
it. It stops the CPU, updates all required windows and sets the CPU back to running. Therefore the time depends
on the communication type used, PC's frequency, CPU's clock, number of updated memory locations (memory
window, SFR window, watches, variables window), etc.

© iSYSTEM, May 2009 11/20

5 Access Breakpoints

The load/store breakpoints dialog is open by clicking Hardware breakpoints button in the Breakpoints dialog.

Hardware Breakpoints

=l

S | e Y I e B 2

= :

1

1

1

i

i

i

r

1

1

78k Hardware Breakpoints dialog

There are a number of access and fetch conditions which can be defined. For each condition the address can be
specified (whether it is an exact address, inside or outside a specified range, higher or lower than the specified

address or an entire object, specified with the ‘...” button), a counter of occurrences of a specified event can be
defined, the access type (read, write, read/write) and the data and mask of the event.

Also, two sequencers are available to generate an as close as possible breakpoint event as possible.

© iSYSTEM, May 2009 12/20

Hardware Breakpoints

al
al
I
r

78k Special Events dialog

There are a number special events can also be specified as hardware breakpoints. Each special event selected will
break the application.

Few useful settings:

e Check the ‘SP is used but not initialized” option to break the application, when SP is not initialized
before use.

e Specify valid SP range (SP>, SP<) to break the application when the stack use exceeds allocated
memory space.

e Check the ‘Read from non-initialized RAM’ option to break the application when it reads the non-
initialized variable.

© iSYSTEM, May 2009 13/20

6
D
2)
3)
)
5)

6)

7

The NEC 78K development system features iSYSTEM proprietary ActivePRO trace.

Getting Started

Connect the system.

Power up the emulator and then power up the target.

Execute debug reset.

The CPU should stop on the address where the reset vector points to.

Open memory window at RAM location and check whether it is possible to modify its content.

If above steps passed successfully, the debugger is operational.

Trace

Trace Features

Refer to a separate document describing ActivePRO Trace features and use.

512K frames buffer depth

Unlimited time stamp reach

Supported Trace Configurations:

>

>

Record Everything

Plain Trigger/Qualifier
Watchdog Trigger
Duration Tracker

Q between B and C events
Pre/Post Qualifier

Data Change

© iSYSTEM, May 2009

14/20

8 Execution Coverage

Execution coverage records the addresses from which the code is being executed, which allows the user to detect
the code respectively memory areas not being executed. It can be used to detect a so called “dead code”, the code
that was never executed. The code may not be executed due to the error in the code or it may be a test code
which was written temporarily for the debugging needs but later not removed from the final application. The
code which is never executed represents an undesired overhead when assigning the necessary code memory
resources.

Execution coverage covers complete CPU address space. It can run an infinite time, which means in practice that
the application can run for days and then the results can be analyzed.

e Select ‘Profiler/Coverage’ window from the View menu and configure Execution Coverage settings.
Normally, ‘All Downloaded Code’ option has to be checked only. The debugger extracts all the necessary
information like addresses belonging to each C/C++ function from the debug info, which is included in the
download file and configures the emulator accordingly. Refer to software user’s guide for more details on
configuring Execution Coverage and its use.

Analyzer Tools |

Profiler | Access Coverage Execution Coverage |

" Complete Address Range: |E:-:|:Iude Modules o
v 2l Downloaded Code

[Ao stark with CPU

— Ranges

Inciude ﬁ > |£Hclude ﬁ p

QFk. I Cancel Sl Help

* Execution Coverage is configured. Reset the application, start Execution Coverage and then run the
application. When it’s assumed that the complete application code is executed, stop the Execution Coverage
and inspect the results.

© iSYSTEM, May 2009 15/20

mair.h | CPUTestc | Testo

CPUTesth | mainc 4 » %

i

vH=x+itc+l:

long FuncZ(int i,char c, long 1)
1«
ol int =x=0;
| long w=0;
for (;x<10;++x)
|
Lk

EELUrn ¥
i

woid Funcd (long *p¥)
[
*p¥=0;:

ifdef USE FLOAT

Add... | Data Disassembly Registers
;I BBC1 CABSBA ADDW AX, #0068 ~| PC BBCA
BBCY Db HOUW HL, AX SP FBSE
BBCS BB POP A% _I P3W I_|
BBCH B2 POP BC A a8
BBC7 9AABG1 CALL ?L_ADDASG_LA3 (@1AB) 4 86
for (;x<18;++x) B 88
BBCA BA FOP A% C 88
BBCE &8 INCW A% D a8
[l eBcc B PUSH A% E 81
for (;x<18;++x) H FB
BBCD EB POP A% L 5C
BBCE B1 PUSH AX AX 0086
BBCF 7DE@ XOR A, #80 BC 86888
BED1 DABAEBA SUBW A%, #8066 DE 8881
BBDY4 BDCA BC “Test.c"::267 (BB9G) HL FB5C
_| return y;
B BBD6 9AASES CALL ?LOAD_AXBC_SP_LA6 (A5A5)
l 6BD9 B4BUBY DBHZ FEB4, BB98
l 6BDC B4 POP DE
- BBDD BY4 POP DE
> BBDE B4 POP DE |

Execution Coverage results displayed in the Source and the Disassembly window

Red boxes on the left side in the source and the disassembly window depict the not executed code and Execution
Coverage window shows which code was executed/not executed for selected modules.

| & & s | ilm 6 88 -

| Module: 734145 (50%] Lines 1294525 [23%] Bytes not executed.

nain.c

[Q_ﬁ Range=

<

| Lines Graph | Lines | Sizes Graph | Sizes »
El% Hodules I 54171 (49%) HEEN J15D-584 (25%)
Bl CPUTeSt.C (100%) I 0 . 2C (100%)
(100%) T (100
Bl ++iCounter: (100%) 747 0100%)
= (100%) 1.1 {100%)
%Short Factorial (short) .1 (100 N 15 (10020
) void CPU Recursion() S (100%) N T (1005

217 (17%)
B 73145 (50%)

B 18-33 (16%)
I J1239-525 (23%)

4 | » [% Profiler 7 Access Coverage

Execution Coverage

Execution Coverage window

© iSYSTEM, May 2009

16/20

9 Access Coverage

Access Coverage is a data access analysis technique, which records all CPU addresses being accessed and a type
of the access, which can be: code read, data read or data write. It can be used to verify the stack consumption.
For instance, when using an operating system, each task has its own stack allocated. After the program is
stopped, it can be checked which tasks have used more bytes and which tasks less bytes than it was reserved for
each task. From these results the user can re-allocate and re-assign the size of the stack memory for each task
which at the end yields optimized memory resources.

Access Coverage covers complete CPU data address space. It can run an infinite time, which means in practice
that the application can run for days and then the access coverage results can be analyzed.

e Select ‘Profiler/Coverage’ window from the View menu and configure Access Coverage settings. Normally,
‘Complete Address Range’ option, which covers complete data space, has to be checked. Additionally,
‘Auto start with CPU’ option can be selected. Refer to software user’s guide for more details on configuring
Access Coverage and its use.

Analyzer Tools Ed |

Profiler &cocess Coverage | E=ecution Coverage I

M ermary Area ¥ Complete Address Fange
Physical =l P aiGiobal Variables
v |
— Banges
Include @ = Exclude ﬁ *

ak. I Cancel Sl Help

Access Coverage is configured. Reset the application, start Access Coverage and then run the application. When
it’s assumed that the complete application code was executed, stop the Access Coverage and inspect the results.

‘Data Mode’ toolbar in the Access Coverage window allows navigating among Code Read, Data Read and Data
write access type.

© iSYSTEM, May 2009 17/20

| & &

FEIO | ANNESSSESNSESSSESSESSENENEENEEEEEEE -]
iy =F NN || T3 3 o o e oo e
FEE0 [AN SES NSNS SSENENENNENEEEEEEN
ggtﬂ:g = EEEEN]

| B oe=-ld | @ " Data Mode | Data Read |

4 | » [Profiler », fccess Coverage A4 Execution Coverage

Access Coverage window

10 Execution Profiler

The Execution Profiler records executed function entry and exit points and then run time-analysis over the
collected information. As a result it gives details on how much time (minimum, maximum, average) has the CPU
spent in the particular function. Available information allows the user to optimize those parts of code, which are
most time consuming or time critical.

The debug download file must contain accurate debug information when using Profiler to analyze C/C++
application. Normally Profiler extracts all the necessary information from the debug information and becomes
useless if configured for wrong function entry and exit points.

e Select ‘Profiler/Coverage’ window from the View menu and configure Profiler settings. Select ‘Functions’
option in the ‘Profile’ field.

e Make sure that ‘Keep history’ option is checked if Code Execution view is going to be used during results
analysis.

® Finally, profiled C/C++ functions are selected by pressing ‘New...” button. It’s recommended that ‘All C
Functions’ is selected for the beginning. Additionally, ‘Include lines’ can be checked which will yield in

time analysis of each source line belonging to the function.

The debugger extracts all the necessary information from the debug info, which is included in the download file
and configure the hardware accordingly.

Refer to software user’s guide for more details on configuring Profiler and its use.

© iSYSTEM, May 2009 18720

Analyzer Tools |

Frofiler | Aecess Coverage I Execution Coverage I

Praofile
¥ Functions

Tl bata
[T helude 5 abjects

Start at I

L

=

Time stamp I Time

W Keep history
[Ao stark with CPU
™| Eonfinuaws aperatian

— Areaz

I Functionz [rata |—

H ardiware et |

V¥ Allows functions without exits
V¥ lgnore functions which exit an entry

Addresz_Globalanables
Addressz_TestScopes
CPU_Irit

CPU_Painters
CPU_Recursion
Factarial

Func1

¥ helude fnctiamines

Address_DifferentFunctionParameters - |

[T Sllawijimps onfunetien

)
Eemove
Edit...

Select All.

I

[

]

Cancel Sl Help

Profiler configuration settings

Profiler is configured. Reset the application, start Profiler and then run the application. The Profiler will stoop
collecting information on a user demand or after the trace buffer becomes full. Then the recorded information is

analyzed and profiler results displayed.

J @ B vin| 30675us Max| 37.363us Awverage | 34.054 us Time | 58063438 ms Total | 9090654550 = ﬁll
Mame [All tasks] I Time: I Percentage |
""" % Addre=s DifferentFunctionParameters 260.973462 ms. 2.87% =l
""" % Addre=s=s GlobalVariables 70.862445 msl 0.78%

""" % Addre=s TestScopes 175 584016 msl 1.93%
----- B CPU_Init 3% n= 0.00%
""" % CPU_Pointers 127 875 us 0.00%
""" % CPU_Recur=sion 24 584540 m= 0.27%
""" % Factorial 147 500515 msl1.62x
""" H) Funci 176.7570638 msf 1.94%
""" H) Func2 109.125957 ms]1.20%
----- B Funcs 106.546 us 0.00%
----- B Funca 0 ns 0.00%
""" % InterruptRoutine 0 n=s 0.00%
""") 1ED 208.957317 msf] 2. 302
""" % main 414 469779 ms.4.56°4
----- B bl 383.625 us 0.00%
""" % Re=etStri 468.8580 us 0.01%
""" % TestStatic 213.134 us 0.00%
----- B Type drrays 717.613499 n=[ill 7 59%
""" Y Type Bitfields 46. 236125 ms]D.Sl‘X
""" % Type_ Enum 34.167973 mS]D.SS‘X
""" % Type FunctionPointer 144 078974 msl 1.58%
""" % Type Hized 27 . 356283 mS]D.SD‘X %
58.063438 ms| 0. 64% T
6.394383106 = | 70 3 3
78.169955 m=| 0. 86% 3
o
4 I 3 | Profiler 4 Access Coverage » Execution Coverage ?i
Profiler results — Code Statistics view
© iSYSTEM, May 2009 19/20

InterruptRoutine

0
0
0
0
{0
0
0
0
0
0
{0
0
0
0
0
0
{0
0
0
0
0

=
é

Profiler results — Code Statistics view

Disclaimer: iSYSTEM assumes no responsibility for any errors which may appear in this document, reserves the
right to change devices or specifications detailed herein at any time without notice, and does not make any
commitment to update the information herein.

© iSYSTEM . All rights reserved.

© iSYSTEM, May 2009 20/20

