
_ V9.9.86

 Technical Notes

NEC 78K Family In-Circuit Emulation

 iSYSTEM, May 2009 1/20

Contents
Contents... 1
1 Introduction ... 2

1.1 Differences from a standard environment ... 2
1.2 Common Guidelines.. 2

2 Emulation Options... 3
2.1 Hardware Options ... 3
2.2 CPU Configuration ... 4
2.3 Power Source and Clock ... 5
2.4 Initialization Sequence .. 6

3 Setting CPU options .. 8
3.1 CPU Options ... 8
3.2 Debugging Options ... 9
3.3 Advanced Options... 10

4 Memory Access ... 11
5 Access Breakpoints ... 12
6 Getting Started... 14
7 Trace.. 14
8 Execution Coverage... 15
9 Access Coverage ... 17
10 Execution Profiler.. 18

 iSYSTEM, May 2009 2/20

1 Introduction

The NEC 78K development system is built around a powerful FPGA, which contains the 78K0 core and all the

necessary debug logic in order to control the core and the peripherals. CPU peripherals are emulated by the 78K0

CPU (umbrella device), which contains all peripherals of the devices being emulated. The CPU is configured

specific to every target CPU being emulated.

Note: The description in this document applies for the 78K0 ActivePRO PODs and does not apply for the old

78K0 Power PODs.

Debug Features

• Unlimited execution breakpoints

• Access breakpoints

• 512KB overlay emulation memory

• Real-time access

• Fail-safe exceptions

• Trace

• Execution & Access Coverage

• Profiler

1.1 Differences from a standard environment

As soon as the POD is inserted in the target instead of the CPU, electrical and timing characteristics are changed.

Different electrical and timing characteristics of used elements on the POD and prolonged lines from the target

to the CPU on the POD contribute to different target (the whole system) characteristics. Consequently, signal

cross-talks and reflections can occur, capacitance changes, etc.

Beside that, pull-up and pull-down resistors are added to some signals. Pull-up/pull-down resistors are required

to define the inactive state of signals like reset and interrupt inputs, while the POD is not connected to the target.

Because of this, the POD can operate as standalone without the target.

1.2 Common Guidelines

Here are some general guidelines that should be followed:

• Use external (target) Vcc/GND if possible (to prevent GND bouncing).

• Make an additional GND connection from the development system (iC3000HS) to the target to protect the

emulator from being damaged due to different target and emulator ground potentials, at the time when the

POD is plugged into the target.

 iSYSTEM, May 2009 3/20

2 Emulation Options

2.1 Hardware Options

In-Circuit Emulator Options dialog, Hardware page

Clear Emulation Memory

This option allows you to force clearing (with the specified value) of emulation memory after the emulation unit

is initialized.

Clearing emulation memory takes about 2 seconds per megabyte, so use it only when you want to make sure that

previous emulation memory contents don't affect the current debug session.

 iSYSTEM, May 2009 4/20

2.2 CPU Configuration

With In-Circuit emulation besides the CPU family and CPU type the emulation POD must be specified (some

CPU's can be emulated with different PODs).

In-Circuit Emulator Options dialog, CPU Configuration page

CPU Setup

Opens the CPU Setup dialog. In this dialog, parameters like memory mapping, bank switching and advanced

operation options are configured. The dialog will look different for each CPU reflecting the options available for

it.

Set Default

This button will set default options for currently selected CPU. These include:

• Vcc and clock source and frequency

• Advanced CPU specific options

Note: Default options are also set when the Family or a POD is changed.

 iSYSTEM, May 2009 5/20

2.3 Power Source and Clock

The Vcc/Clock Setup page determines the CPU's power and clock source.

In-Circuit Emulator Options dialog, Vcc/Clock Setup page

Note: When either of these settings is set to External, the corresponding line is routed directly to the CPU from

the target system.

Clock Source

Clock source can be either used internal from the emulator or external from the target. It is recommended to use

the internal clock when possible. When using the clock from the target, it may happen that the emulator cannot

initialize any more.

It is dissuaded to use a crystal in the target as a clock source during the emulation. It is recommended that the

oscillator be used instead. Normally, a crystal and two capacitors are connected to the CPU's clock inputs in the

target application as stated in the CPU datasheets. A length of clock paths is critical and must be taken into

consideration when designing the target. During the emulation, the distance between the crystal in the target and

the CPU (on the POD) is furthermore increased, therefore the impedance may change in a manner that the crystal

doesn't oscillate anymore. In such case, a standalone crystal circuit, oscillating already without the CPU must be

built or an oscillator must be used.

Note: The clock frequency is the frequency of the signal on the CPU's clock input pin. Any internal manipulation

of it (division or multiplication) depends entirely on the emulated CPU.

Vcc Source

Determines whether Emulator or the target system provides power supply for the CPU.

 iSYSTEM, May 2009 6/20

2.4 Initialization Sequence

Typically, there is no need to use the initialization sequence on an In-Circuit Emulator, especially when the

emulated target CPU is a single chip CPU. Primarily, the initialization sequence is used on On-Chip Debug

systems to initialize the CPU after reset to be able to download the code to the target memory.

Besides enabling a disabled memory access upon reset, the initialization sequence can be used for instance to

disable the CPU internal watchdog being active after reset or to modify any other CPU registers, when it’s

preferred to run the application with the modified CPU reset state.

The initialization sequence can be set up in two ways:

1. Set up the initialization sequence by adding necessary register writes directly in the Initialization page

within winIDEA.

2. winIDEA accepts initialization sequence as a text file with .ini extension. The file must be written

according to the syntax specified in the appendix in the hardware user’s guide.

Excerpt from the sample D78KF0547.ini file:

S WTM B 0x1F //comment

 iSYSTEM, May 2009 7/20

The advantage of the second method is that you can simply distribute your .ini file among different workspaces

and users. Additionally, you can easily comment out some line while debugging the initialization sequence itself.

There is also a third method, which can be used too but it’s not highly recommended for the start up. The user

can initialize the CPU by executing part of the code in the target ROM for X seconds by using 'Reset and run for

X sec' option.

 iSYSTEM, May 2009 8/20

3 Setting CPU options

3.1 CPU Options

The CPU Setup, Options page provides some emulation settings, common to most CPU families and all

emulation modes. Settings that are not valid for currently selected CPU or emulation mode are disabled. If none

of these settings is valid, this page is not shown.

CPU Setup, Options page

Interrupts Enabled When Stopped

The emulator itself doesn’t support servicing interrupts while the application is stopped (interrupts in

background). Setting of this option impacts only the CPU behaviour during the debug single step execution.

Default disabled option makes the emulator to mask the interrupts while the source step debug command is being

executed, which yields more predictive behaviour in case of the application using interrupts. Interrupts are

disabled through the IE flag in the PSW register hidden from the user.

If this option is enabled, the emulator doesn’t mask interrupts and they can occur while stepping through the

application. If there is a periodic interrupt, it may happen that the user will keep re-entering the interrupt while

stepping. In such applications, it’s recommended to disable this option.

Stop CPU Activities When Stopped

When the option is checked, all internal peripheral modules, like timers and counters, are stopped when the

user's program is stopped. Otherwise, timers and counters remain running while the program is stopped. Usually,

when the option is checked, the emulation system behaves more predictable while stepping through the program.

While being aware of the consequences, it is up to the user whether the option is checked or not.

 iSYSTEM, May 2009 9/20

3.2 Debugging Options

NEC 78k Family Debugging Options

Execution Breakpoints

Hardware Breakpoints

Hardware breakpoints are breakpoints that are already provided by the CPU. The number of hardware

breakpoints is limited to sixteen. The advantage is that they function anywhere in the CPU space, which is not

the case for software breakpoints, which normally cannot be used in the FLASH memory, non-writeable memory

(ROM) or self-modifying code. If the option 'Use hardware breakpoints' is selected, only hardware breakpoints

are used for execution breakpoints.

Note that the debugger uses execution breakpoints hidden from the user when executing the source step debug

command. A single execution breakpoint is sufficient to implement the source step for almost all supported CPU

families. NEC 78K microcontroller is an exception to this rule. In worst case, the debugger can use all 16

available hardware breakpoints in order to carry out the source step and thus leaving non to the user. In contrary,

when all available hardware breakpoints are used as execution breakpoints, the debugger may fail to execute the

source step. Software breakpoints should be used if the user finds this too annoying.

Software Breakpoints

Available hardware breakpoints often prove to be insufficient. Then the debugger can use unlimited software

breakpoints to work around this limitation.

When a software breakpoint is being used, the program first attempts to modify the source code by placing a

break instruction into the code. If setting software breakpoint fails, a hardware breakpoint is used instead.

Note: It is recommended to use unlimited software breakpoints since the 78K emulator provides RAM overlay

memory for the complete code area.

 iSYSTEM, May 2009 10/20

3.3 Advanced Options

NEC 78k Advanced Options

Target RESET enable

The NEC 78k emulation system allows different target RESET options which can individually be defined in this

dialog. Also, a POC reset comparator is available, for which the voltages can be specified between 1.6V and

2.7V.

 iSYSTEM, May 2009 11/20

4 Memory Access

NEC 78k development tool features standard monitor memory access, which require user program to be stopped

and real-time memory access based on a shadow memory, which allows reading the memory while the

application is running.

Real-Time Memory Access

The emulator features dual-port memory for the complete 78K0 memory space except for the SFR area, which is

covered by the shadow memory. This allows all memory to be read and write in real-time without intrusion on

the application execution, except for the SFRs, which can only be read in real-time.

Monitor Access

When monitor access to the CPU’s memory is requested, the emulator stops the CPU and instructs it to read the

requested number of bytes.

Since all accesses are performed using the CPU, all memory available to the CPU can be accessed. The

drawback to this method is that memory cannot be accessed while the CPU is running. Stopping the CPU,

accessing memory and running the CPU is an option, which, however, affects the real time execution

considerably.

The time the CPU is stopped for is relative and cannot be exactly determined. The software has full control over

it. It stops the CPU, updates all required windows and sets the CPU back to running. Therefore the time depends

on the communication type used, PC's frequency, CPU's clock, number of updated memory locations (memory

window, SFR window, watches, variables window), etc.

 iSYSTEM, May 2009 12/20

5 Access Breakpoints

The load/store breakpoints dialog is open by clicking Hardware breakpoints button in the Breakpoints dialog.

78k Hardware Breakpoints dialog

There are a number of access and fetch conditions which can be defined. For each condition the address can be

specified (whether it is an exact address, inside or outside a specified range, higher or lower than the specified

address or an entire object, specified with the ‘…’ button), a counter of occurrences of a specified event can be

defined, the access type (read, write, read/write) and the data and mask of the event.

Also, two sequencers are available to generate an as close as possible breakpoint event as possible.

 iSYSTEM, May 2009 13/20

78k Special Events dialog

There are a number special events can also be specified as hardware breakpoints. Each special event selected will

break the application.

Few useful settings:

• Check the ‘SP is used but not initialized’ option to break the application, when SP is not initialized

before use.

• Specify valid SP range (SP>, SP<) to break the application when the stack use exceeds allocated

memory space.

• Check the ‘Read from non-initialized RAM’ option to break the application when it reads the non-

initialized variable.

 iSYSTEM, May 2009 14/20

6 Getting Started

1) Connect the system.

2) Power up the emulator and then power up the target.

3) Execute debug reset.

4) The CPU should stop on the address where the reset vector points to.

5) Open memory window at RAM location and check whether it is possible to modify its content.

6) If above steps passed successfully, the debugger is operational.

7 Trace

The NEC 78K development system features iSYSTEM proprietary ActivePRO trace.

Trace Features

• 512K frames buffer depth

• Unlimited time stamp reach

• Supported Trace Configurations:

� Record Everything

� Plain Trigger/Qualifier

� Watchdog Trigger

� Duration Tracker

� Q between B and C events

� Pre/Post Qualifier

� Data Change

Refer to a separate document describing ActivePRO Trace features and use.

 iSYSTEM, May 2009 15/20

8 Execution Coverage

Execution coverage records the addresses from which the code is being executed, which allows the user to detect

the code respectively memory areas not being executed. It can be used to detect a so called “dead code”, the code

that was never executed. The code may not be executed due to the error in the code or it may be a test code

which was written temporarily for the debugging needs but later not removed from the final application. The

code which is never executed represents an undesired overhead when assigning the necessary code memory

resources.

Execution coverage covers complete CPU address space. It can run an infinite time, which means in practice that

the application can run for days and then the results can be analyzed.

• Select ‘Profiler/Coverage’ window from the View menu and configure Execution Coverage settings.

Normally, ‘All Downloaded Code’ option has to be checked only. The debugger extracts all the necessary

information like addresses belonging to each C/C++ function from the debug info, which is included in the

download file and configures the emulator accordingly. Refer to software user’s guide for more details on

configuring Execution Coverage and its use.

• Execution Coverage is configured. Reset the application, start Execution Coverage and then run the

application. When it’s assumed that the complete application code is executed, stop the Execution Coverage

and inspect the results.

 iSYSTEM, May 2009 16/20

Execution Coverage results displayed in the Source and the Disassembly window

Red boxes on the left side in the source and the disassembly window depict the not executed code and Execution

Coverage window shows which code was executed/not executed for selected modules.

Execution Coverage window

 iSYSTEM, May 2009 17/20

9 Access Coverage

Access Coverage is a data access analysis technique, which records all CPU addresses being accessed and a type

of the access, which can be: code read, data read or data write. It can be used to verify the stack consumption.

For instance, when using an operating system, each task has its own stack allocated. After the program is

stopped, it can be checked which tasks have used more bytes and which tasks less bytes than it was reserved for

each task. From these results the user can re-allocate and re-assign the size of the stack memory for each task

which at the end yields optimized memory resources.

Access Coverage covers complete CPU data address space. It can run an infinite time, which means in practice

that the application can run for days and then the access coverage results can be analyzed.

• Select ‘Profiler/Coverage’ window from the View menu and configure Access Coverage settings. Normally,

‘Complete Address Range’ option, which covers complete data space, has to be checked. Additionally,

‘Auto start with CPU’ option can be selected. Refer to software user’s guide for more details on configuring

Access Coverage and its use.

Access Coverage is configured. Reset the application, start Access Coverage and then run the application. When

it’s assumed that the complete application code was executed, stop the Access Coverage and inspect the results.

‘Data Mode’ toolbar in the Access Coverage window allows navigating among Code Read, Data Read and Data

write access type.

 iSYSTEM, May 2009 18/20

Access Coverage window

10 Execution Profiler

The Execution Profiler records executed function entry and exit points and then run time-analysis over the

collected information. As a result it gives details on how much time (minimum, maximum, average) has the CPU

spent in the particular function. Available information allows the user to optimize those parts of code, which are

most time consuming or time critical.

The debug download file must contain accurate debug information when using Profiler to analyze C/C++

application. Normally Profiler extracts all the necessary information from the debug information and becomes

useless if configured for wrong function entry and exit points.

• Select ‘Profiler/Coverage’ window from the View menu and configure Profiler settings. Select ‘Functions’

option in the ‘Profile’ field.

• Make sure that ‘Keep history’ option is checked if Code Execution view is going to be used during results

analysis.

• Finally, profiled C/C++ functions are selected by pressing ‘New…’ button. It’s recommended that ‘All C

Functions’ is selected for the beginning. Additionally, ‘Include lines’ can be checked which will yield in

time analysis of each source line belonging to the function.

The debugger extracts all the necessary information from the debug info, which is included in the download file

and configure the hardware accordingly.

Refer to software user’s guide for more details on configuring Profiler and its use.

 iSYSTEM, May 2009 19/20

Profiler configuration settings

Profiler is configured. Reset the application, start Profiler and then run the application. The Profiler will stoop

collecting information on a user demand or after the trace buffer becomes full. Then the recorded information is

analyzed and profiler results displayed.

Profiler results – Code Statistics view

 iSYSTEM, May 2009 20/20

Profiler results – Code Statistics view

Disclaimer: iSYSTEM assumes no responsibility for any errors which may appear in this document, reserves the

right to change devices or specifications detailed herein at any time without notice, and does not make any

commitment to update the information herein.

 iSYSTEM . All rights reserved.

