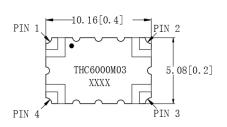


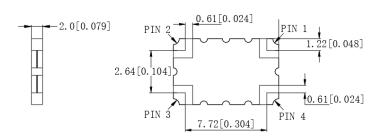
Hybrid Coupler 3dB, 90°

Rev A1.0

The THC6000M03 is a low profile, high performance 3dB hybrid coupler in a new easy to use, manufacturing friendly surface mount package. It is designed for AMPS Band applications. The THC6000M03 is particularly for balanced power and low noise amplifiers, plus signal designed distribution and other applications where low insertion loss and tight amplitude and phase balance is required. It can be used in power applications up to 300 Watts.

Parts have been subjected to rigorous qualification testing and they are manufactured using materials with coefficients of thermal expansion (CTE) compatible with common substrates such as FR4, G-10, RF-35, RO4350 and polyimide.

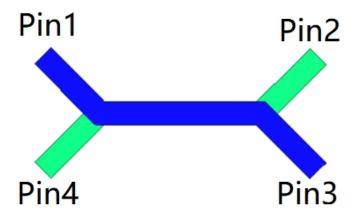

Features:


- .4000-8000 MHz
- . AMPS
- .High Power
- .Very Low Loss
- .Tight Amplitude Balance
- .High Isolation
- .Low VSWR
- .Good Repeatability
- .CTE compatible with FR4, G-10, RF-35, RO4350B and polyimide
- .Immersion gold, prevent surface oxidation & scratch
- .RoHS Compliant
- .Tape & Reel Package available

Electrical Specifications

Frequency	Isolation	Insertion Loss	VSWR	Amplitude Balance
MHz	dB Min	dB Max	Max:1	dB Max
4000-8000	-16.0	0.5	1.35	±0.6
Phase Balance	Power	Size	Thickness	Operating Temp.
Degrees	Avg.CW.Watts	mm	mm	°C
90±6	150	10.16*5.08	2.0	-55 to+105

TOP VIEW SIDE VIEW BOTTOM VIEW



Hybrid Coupler 3dB, 90°
Rev A1.0

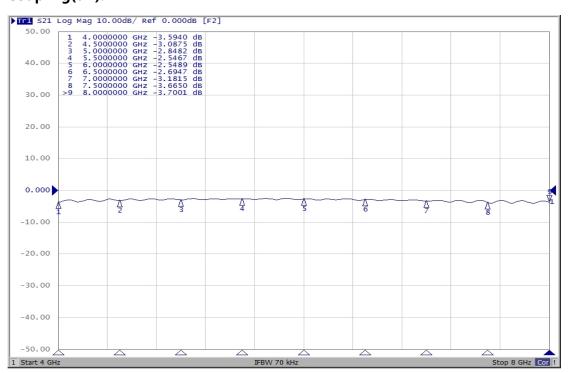
Hybrid Coupler Pin Configuration

The THC6000M03 has an orientation marker to denote Pin 1. Once port one has been identified the other ports are known automatically. Please see the chart below for clarification:

Configurati on	Pin 1	Pin 2	Pin 3	Pin 4		
Splitter	Input	Isolated	-3dB∠θ-90°	-3dB∠θ		
Splitter	Isolated	Input	-3dB∠θ	-3dB∠θ-90°		
Splitter	-3dB∠θ-90°	-3dB∠θ	Input	Isolated		
Splitter	-3dB∠θ	-3dB∠θ-90°	Isolated	Input		
Combiner	A∠θ-90°	A∠θ	Isolated	Output		
Combiner	A∠θ	A∠θ-90°	Output	Isolated		
Combiner	Isolated	Output	A∠θ-90°	A∠θ		
Combiner	Output	Isolated	A∠θ	A∠θ-90°		

Note:

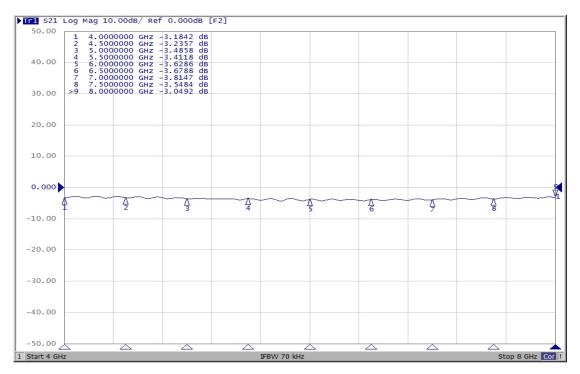
"A" is the amplitude of the applied signals. When two quadrature signals with equal amplitudes are applied to the coupler as described in the table, they will combine at the output port. If the amplitudes are not equal, some of the applied energy will be directed to the isolated port.

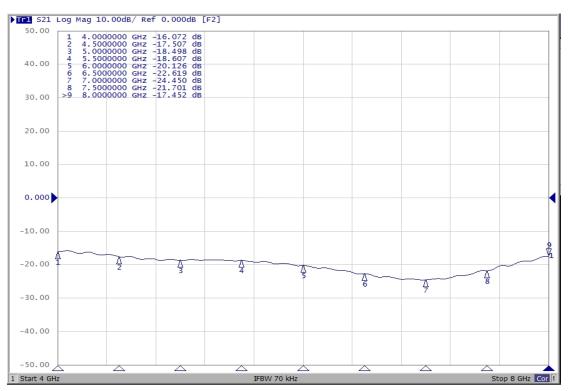

Hybrid Coupler 3dB, 90°
Rev A1.0

Typical Performance Data

Fr	equency	MHz	4000	4500	5000	5500	6000	6500	7000	7500	8000
C	Coupling	dB	-3.59	-3.09	-2.85	-2.55	-2.55	-2.69	-3.18	-3.44	-3.70
Tra	nsmission	dB	-3.18	-3.24	-3.49	-3.51	-3.63	-3.68	-3.81	-3.55	-3.05
lı	nsertion Loss	dB	-0.32	-0.16	-0.16	-0.03	-0.09	-0.18	-0.48	-0.48	-0.37
1:	solation	dB	-16.07	-17.51	-18.50	-18.61	-20.13	-22.62	-24.45	-21.70	-17.45
	Phase	degree	88.86	90.18	91.61	91.86	91.03	89.22	85.72	84.96	87.48
	Input	1	1.22	1.27	1.28	1.27	1.25	1.25	1.26	1.29	1.34
VSWR	coupler	1	1.31	1.32	1.28	1.23	1.19	1.18	1.20	1.23	1.29
	Transmission	1	1.22	1.28	1.30	1.28	1.25	1.22	1.21	1.22	1.26
	Isolated	I	1.18	1.19	1.17	1.16	1.17	1.19	1.20	1.24	1.26

Typical Performance

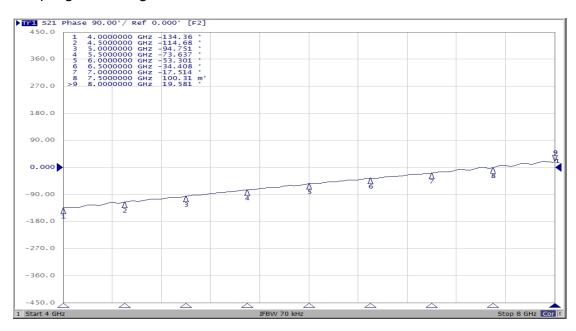

Coupling(dB):

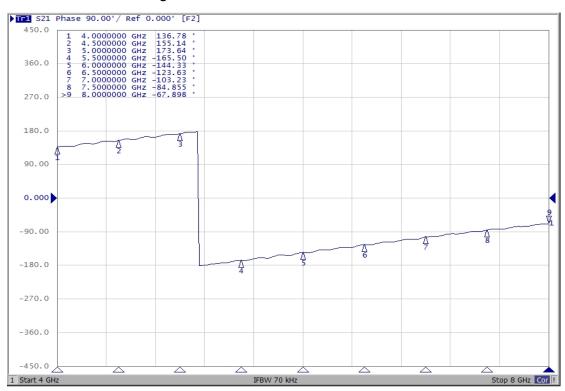


Hybrid Coupler 3dB, 90°
Rev A1.0

Transmission(dB):

Isolation(dB):

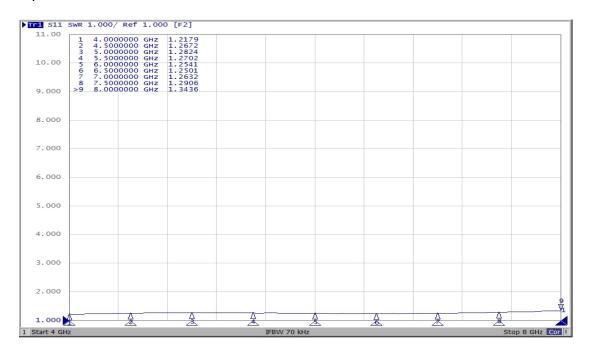


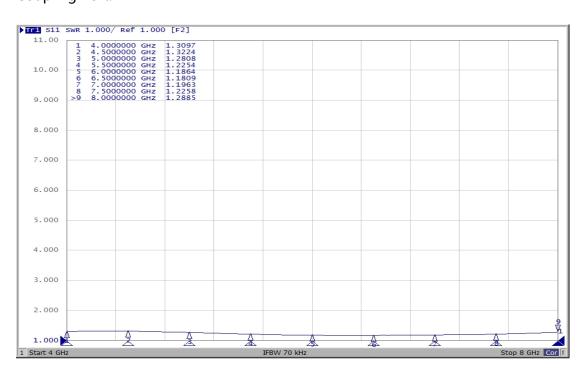

Hybrid Coupler 3dB, 90°
Rev A1.0

Phase(degree):

Coupling Phase(degree):

Transmission Phase(degree):

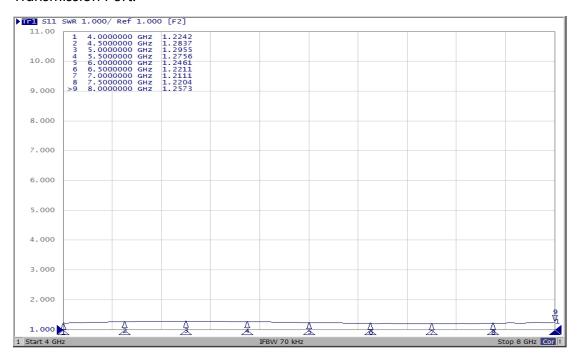


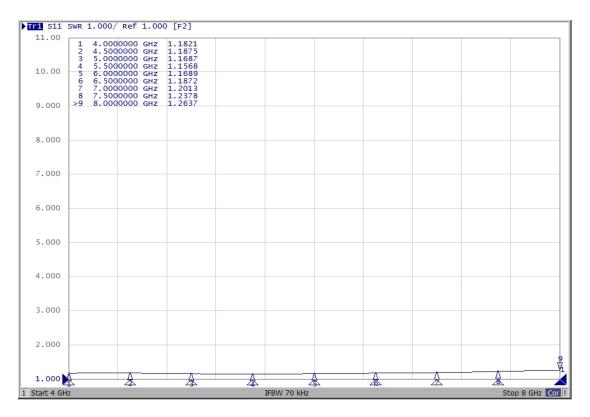

Hybrid Coupler 3dB, 90°
Rev A1.0

Return Loss:

Input Port:

Coupling Port:




Hybrid Coupler 3dB, 90°

Rev A1.0

Transmission Port:

Isolation Port:

