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ABSTRACT Dimensionality reduction techniques including partial least-squares (PLS) and principal
component analysis (PCA) have been widely applied for data-driven process monitoring. However, the
objectives of PCA- and PLS-based techniques are not specific for fault detection where a superior detection
performance results from a large divergence (i.e., difference) between normal operating data and faulty data.
In this article, a maximized divergence analysis (MDA) method is proposed to detect faults in industrial sys-
tems. The objective ofMDA is to directly maximizes the Kullback-Leibler (KL) divergence corresponding to
the distributions of normal operating data and faulty data during the procedure of dimensionality reduction.
An algorithm using eigenvalue-decomposition technique is put forward to efficiently solve the optimization
problem of maximizing KL-divergence. Two-dimensional synthetic data and Tennessee Eastman process are
used to demonstrate the effectiveness of the proposed MDA-based detection approach.

INDEX TERMS Dimensionality reduction technique, fault detection, fault diagnosis, process monitoring,
Kullback-Leibler divergence, Tennessee Eastman process.

I. INTRODUCTION
Fault detection, which serves as the first procedure in pro-
cess monitoring scheme, focuses on determining whether a
fault has occurred [1], [2]. Detecting faults accurately and
efficiently is crucial for the safety and reliability of practical
industries, since a fault or change in a complicated industrial
process may quickly evolve into a disastrous accident [3],
[4]. An example is that the oil spill of Deepwater Horizon
in 2010 caused economic loss over $90 billion [5].

Over last decades, data-driven process monitoring tech-
niques have received growing research interest in academia
and industry [6]–[8]. Various data-based approaches have
been adopted in fault detection. Principal component anal-
ysis (PCA) is one of the most widely used fault detection
approaches for industrial processes, and have been applied
in the chemicals industry [9], [10], semiconductor manufac-
turing [11], and pharmaceutical manufacturing [12]. PCA
aims to produce lower dimensional representations of the
original data by maximizing the variance during the pro-
cedure of dimensionality reduction [2], [9]. However, the
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obtained projection vectors may not provide the optimal
directions for separating faulty and normal classes. Although
the variance is not guaranteed to be the best feature for
determining directions in a lower dimensional space that is
best for the detection of faults, the variance is related to
the single-variable Shewart control chart. Both methods use
the variance to define thresholds for fault detection, with a
fault being identified as being an outlier compared to the
variation observed during normal operating conditions. PCA
can be interpreted as being the direct generalization of the
single-variable Shewart control chart to multiple variables
in which normal operations reside with a lower dimensional
space.

Partial least squares (PLS) [13] is another dimensionality
reduction technique commonly used for detecting faults in
industrial processes. The objective of PLS is to generate
lower dimensional data representations by maximizing the
covariance between the original input and output data [14].
Therefore, the separability between faulty and healthy cases
may not be maximized in the latent space. Unlike PCA,
PLS uses an iterative algorithm such as nonlinear iterative
partial least squares [14] to construct the lower dimensional
representation.
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Other dimensionality reduction techniques for detecting
faults employ state-space models. These models are usu-
ally constructed using subspace identification methods such
as canonical variate analysis (CVA) [15]–[17], numerical
algorithm subspace-based state-space system identification
(N4SID) [18], and multivariable output-error state-space
(MOESP) [2]. CVA is one of the most used subspace iden-
tification techniques in industrial applications. The objective
of CVA is to produce lower dimensional representations that
maximize the correlation between the ‘past’ information of
process input and output data and the ‘future’ information of
output data [19], [20]. This method takes serial correlations
into account during the dimensionality reduction procedure.

However, the objectives of PCA-, PLS-, and CVA-based
dimensionality reduction techniques are not specific for fault
detection in which the criterion is the maximization of the
separability (i.e., difference) corresponding to the distribu-
tions of normal operating data and faulty data. A large value
of separability leads to a good ability to detect faults [21].
Additionally, at least some quantity of faulty data is available
from historical databases in industry, which is not optimally
used in PCA-, PLS-, or CVA-based methods. The utilization
of faulty data can improve the detection performance for the
particular faults encountered when the data were collected.
To the end, alternative methods that specifically maximize
the difference between normal operating data and faulty data
have promise for fault detection. Fisher discriminant analysis
(FDA), which maximizes the separability between different
classes while minimizing the scatter within each class, is one
such method. However, FDA can only produce m− 1 dimen-
sional loading vectors form-class classification problems [2],
[22]. For fault detection (binary classification), FDA can only
extract one loading vector, although multiple dimensions can
be useful in some applications.

The Kullback-Leibler (KL) divergence, also known as dis-
crimination information, is an efficient method to quantify the
dissimilarity between two distributions of datasets [23]–[25].
A large value of KL-divergence corresponds to the proba-
bility density functions of normal operating data and faulty
data being well isolated, which indicates it’s easy for detect-
ing faults. A value close to zero associates with the two
distributions of datasets are similar, which means it is diffi-
cult to discriminate faulty data from normal operating data.
KL divergence-based fault detection (and its direct relation
with the generalized likelihood ratio) has been reported in the
literature and shown exceptional performance. For instance,
the incipient fault detection has been extensively based on
KL divergence [30], [31] and its combination with the PCA,
applied to CRH5 [31]–[33].

Previously, an effective fault detection method was devel-
oped based on the KL-divergence in which the value of
KL-divergencewas calculated between normal operating data
and a uniform distribution data for single variables in train-
ing steps [26]. However, the information on faulty data was
not utilized and no dimensionality reduction procedure on
maximizing divergence was used [26]. In this regard, this

article presents a novel KL-divergence-basedmethodwith the
following contributions:
• We propose a fault detection method, termed as Max-
imized Divergence Analysis (MDA), that can directly
maximize KL-divergence corresponding to the distribu-
tions of normal operating data and faulty data during the
procedure of dimensionality reduction.

• An eigenvalue decomposition-based algorithm is put
forward to efficiently solve the optimization problem of
maximizing the KL-divergence.

• Two detection statistics are derived using the obtained
and discarded loading scores in the MDA model.

• The proposed methods are verified based on a numerical
example and the Tennessee Eastman process.

The rest of this article is organized as follows.
Section II briefly revisits the Kullback-Leibler divergence.
The MDA-based fault detection method is put forward in
Section III. Section IV demonstrates the effectiveness of
the developed MDA approach in two-dimensional synthetic
datasets and the Tennessee Eastman process, followed by
concluding remarks in Section V.

II. KULLBACK-LEIBLER DIVERGENCE REVISITED
The Kullback-Leibler (KL)-divergence, which quantifies the
dissimilarity for two probability density functions, is defined
as [23]

D(pnf || pf ) =
∫
pnf (x) ln

pnf (x)
pf (x)

dx, (1)

where pnf and pf denote the distributions of normal operating
data and faulty data, respectively.

From the equation (1), the KL-divergence can be explained
as the expected value of ln pnf

/
pf based on the probability

density function of pnf [23]. The KL-divergence is non-
negative, i.e., D(pnf || pf ) ≥ 0, with equality if and only if
pnf = pf .
If pnf ∼ N (µnf ,6nf ) and pf ∼ N (µf ,6f ) with 6nf

and 6f positive definite, we can explicitly compute the
KL-divergence as [23]

D(pnf || pf ) =
∫
pnf (x) ln

pnf (x)
pf (x)

dx

=
1
2
ln

∣∣6f
∣∣∣∣6nf
∣∣ + 1

2
tr
{
6nf

(
6−1f −6

−1
nf

)}
+

1
2
tr
{
6−1f

(
µnf − µf

) (
µnf − µf

)T} (2)

where (µnf ,6nf ) and (µf ,6f ) are the means and covariance
matrices of the normal operating data and faulty data, respec-
tively.

III. THE KL-DIVERGENCE MAXIMIZED ANALYSIS
APPROACH FOR FAULT DETECTION
A. MAXIMIZED DIVERGENCE ANALYSIS
A large value of KL-divergence associates with the fault
is easy to detect, whereas a value close to zero cor-
responds to the fault being hard to detect. Therefore,
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maximizing the KL-divergence is beneficial for detecting
faults of industrial processes. In other words, a method
that can generate large values of divergence between nor-
mal operating data and faulty data during dimensional-
ity reduction steps, possess good performance of fault
detection.

To the end, we propose a fault detection approach termed
as Maximized Divergence Analysis (MDA), which has the
objective of maximizing KL-divergence during the dimen-
sionality reduction step:

max
w

D(pnf || pf ) =
∫
pnf (wTx) ln

pnf (wTx)
pf (wTx)

dx, (3)

where x ∈ Rm is the vector consisting of m variables, w ∈
Rm×k denotes the loading matrix, and k is the reduction order
with k ≤ m.

If pnf and pf follow multivariable Gaussian distributions,
the objective of (3) can also be explicitly expressed as (2)
by replacing 6f with wT6f w, 6nf with wT6nf w, µnf with
wTµnf , and µf with wTµf .
The solution of the optimization (3) for the context when

pnf and pf follow multivariable Gaussian distributions is
investigated below. Since wTw is positive definite, there
exists a nonsingular transformation Q ∈ Rk×k such that
(wQ)T wQ = Ik , and because the invariance property of
KL-divergence for nonsingular transformations [23], i.e.,
Dw = DwQ, it suffices to consider only those matrices w
belonging to the set � :=

{
w|wTw = Ik

}
. Moreover, given

any w ∈ �, it is possible to construct a matrix v ∈ Rm×(m−k)

satisfying vTv = Im−k , andwTv = 0, and such that the matrix

P :=
[
w v

]
, (4)

satisfies PTP = Im (i.e., P is an orthonormal matrix).
It follows that for any w ∈ �, it can be obtained that

w = P
[
Ik
0

]
, (5)

and the solution to the loading scores problem amounts
to optimally rotating the original coordinates of the
spectral measurement space (i.e., x → PTx) and
then selecting the first k components of the resulting
vectors.

From (2), the divergenceD(pnf || pf ) in the space of optimal
rotation by P can be expressed as

D(pnf || pf )

=
1
2
ln
∣∣∣PT6−1nf 6f P

∣∣∣+ 1
2
tr
{
PT6−1f 6nf P

}
−

1
2
tr
{
PTP

}
+

1
2
tr
{
PT6−1f

(
µnf − µf

) (
µnf − µf

)T P}. (6)

Proposition 1: Let µnf , µf , 6nf , and 6f be defined
above, and 6nf and 6f are positive definite. Let P i ∈ Rm×1

(i = 1, 2, . . . ,m) be defined as the ith column (load-
ing vector) of the optimal rotation matrix P in (4) or (6).

Then the loading vector P i can be obtained by solving
the below equation:[
6−1f 6nf +6

−1
f

(
µnf − µf

) (
µnf − µf

)T]P i = λiP i,
(7)

where the eigenvalues λi are the divergence degree by pro-
jecting the data onto P i.

Proof: From (6), the objective of the problem for opti-
mally rotating the original coordinates of the spectral mea-
surement space can be rewritten as

max
Pi

D(pnf || pf ) =
1
2
ln
(
PT
i 6
−1
nf 6f P i

)
+

1
2
PT
i 6
−1
f 6nf P i

−
1
2
PT
i P i +

1
2
PT
i 6
−1
f (µnf − µf )(µnf − µf )

TP i,

Subject to PT
i P i = 1, and PT

i P j = 0 for 1 ≤ j < i. (8)

The technique of Lagrange multipliers is employed and an
auxiliary function is introduced as

L(P i, λi, µj)

:=
1
2
ln
(
PT
i 6
−1
nf 6f P i

)
+

1
2
PT
i 6
−1
f 6nf P i −

1
2
PT
i P i

+
1
2
PT
i 6
−1
f (µnf − µf )(µnf − µf )

TP i

−
λi

2
(PT

i P i − 1)−
i−1∑
j=1

µjPT
i P j. (9)

Taking the derivative of (9) with respect to P i, i.e.,

∂

∂P i
L(P i, λi, µj) = 0, (10)

results in

6−1nf 6f P i
(
PT
i 6
−1
nf 6f P i

)−1
+6−1f 6nf P i − P i

+6−1f
(
µnf − µf

) (
µnf − µf

)T P i − λiP i
−

i−1∑
j=1

µjP j = 0. (11)

Multiplying the left side of (11) by PT
i , it follows that

PT
i 6
−1
f 6nf P i + PT

i 6
−1
f

(
µnf − µf

) (
µnf − µf

)T
×P i − λiPT

i P i = 0, (12)

which is satisfied if the loading vector P i meets the condition:[
6−1f 6nf +6

−1
f

(
µnf − µf

) (
µnf − µf

)T]P i−λiP i=0.
(13)

In addition, taking the derivative of (9) with respect to λi
and µj (i.e., ∂

∂λi
L(P i, λi, µj) = 0 and ∂

∂µj
L(P i, λi, µj) = 0)

give PT
i P i = 1 and PT

i P j = 0, respectively; and together with
(13), it is equivalent to solve the eigenvalue problem of (7).
The eigenvalue λi implies the divergence degree by projecting
the data onto P i. �
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Thus, the orthonormal loadings w ∈ Rm×k in (3) that
maximizes the value of KL-divergence can be selected as the
first k components (i.e., equation (5)) of the optimal rotation
matrix P obtained according to Proposition 1, and its associ-
ated loadings can be calculated as d = wTx. The reduction
order k for MDA can be determined by cross-validation or
the Akaike information criterion [1].
Remark 1: The proposed method essentially treats the

fault detection problem as a binary classification problem
(normal vs faulty), any type of faulty data from the historian
can be useful for training our MDA algorithm. In practice,
we often have some available faulty data from the historian.
Our proposed method will utilize this valuable resource to
improve the fault detection performance. Such faulty data are
not well explored by the PCA, PLS, or CVA methods, which
are unsupervised requiring only normal data.
Remark 2: The Proposition 1 assumes that the density

functions pnf and pf are Gaussian, which may not be valid in
practice if the underlying process is nonlinear. However, the
proposed MDA framework is still applicable for such cases.
For non-Gaussian but known pnf and pf , the formulation
of (3) still has a closed-form expression where nonlinear
optimization techniques may be needed to solve it. In the
worst case where the expressions of pnf and pf are unknown,
one can use density function estimation techniques, such as
the kernel density estimation, to obtain estimated probability
functions pnf and pf based on faulty and normal datasets.
Thus, the proposed MDA framework can be easily adapted
to different scenarios with known or unknown non-Gaussian
pnf and pf .

B. MDA-BASED STATISTICS FOR FAULT DETECTION
Similar to the detection statistics used in the PCA- and
CVA-basedmonitoringmethod, we follow the similarmanner
to construct the detection statistics (i.e., T 2 and Q) for the
proposed MDA-based method. Specifically, the statistics T 2

and Q, which are respectively constructed on the retained
loading scores and discarded loading scores in the MDA
model MDA, are defined as

T 2
= dT6−1d d, (14)

and

Q = rTr, (15)

where 6d is the covariance matrix of d , and r = (I −wwT)x.
When the detection statistics T 2andQ are below the thresh-

olds, namely, T 2
≤ T 2

α and Q ≤ Qα , where T 2
α and Qα are

the upper control limits for the metrics of T 2and Q with a
significance level α, the process operations are regarded as
normal. Otherwise, a fault occurs in the process operations.
The upper control limits T 2

α and Qαis calculated using the
empirical approach based on the calibration samples under
NOC [2]. For instance, a 99% confidence upper control limit
can be derived as the T 2 value below which 99% of the
calibration data are located.

Emerging data-driven fault detection methods can be clas-
sified into unsupervised (dimension reduction) approaches,
e.g., PCA, PLS, and CVA, and supervised approaches, e.g.,
random forest, decision tree, and SVM [34]. The unsuper-
vised techniques often optimize some objectives that are
not directly related to maximizing the separability between
normal and faulty classes, in contrast to our approach. The
supervised approaches generally rely on statistical machine
learning without dimension reduction. Thus, in the pres-
ence of high dimensions as often met in practice, such
methods may require more data for training. Deep learning
approaches, both supervised and unsupervised (e.g., autoen-
coder and deep neural networks), have shown prominent
advantages for enhancing the performance. However, they
often require a large amount of training data, which are
expensive to gather in practice. Compared with existing
approaches, our method based on dimension reduction does
not require much training data. At the same time, it is super-
vised where any faulty data from the historian can be utilized
to formulate the fault class. In particular, it does not require
the labelling of the specific fault type for each faulty dataset.
Thereby, it can fully uncover the values of past faulty data for
promoting the fault detection.

IV. CASE STUDIES FOR SYNTHETIC DATASETS AND THE
TENNESSEE EASTMAN PROCESS
A. TWO-DIMENSIONAL SYNTHETIC DATASETS
In this subsection, a comparison of the one-dimensional (1D)
projections of PCA, FDA, and MDA for two-dimensional
(2D) synthetic datasets is conducted. The 2D datasets are
produced by

Normal operating data:

{
y1 ∼ N (1, 0.25)
y2 = y1 + v,

(16)

and

Faulty data:

{
y1 ∼ N (1, 1)
y2 = −y1 + 2+ w,

(17)

where v and w are white noise sequences that follow v ∼
N (1, 0.05) andw ∼ N (1, 0.2), respectively. Both the normal
and faulty data had 100 samples.
In the 1D projections obtained by PCA, FDA, and MDA in

Figure 1 indicate that MDA provided the best data separation
for the two classes, followed by FDA, and then PCA. A visual
inspection of Figure 1 indicates that the majority of the faulty
data points lie outside of any reasonably defined T 2threshold
for MDA, whereas all of the faulty data lie within the T 2

threshold for PCA and about half of the faulty data lie within
the T 2threshold for FDA. The contrasting performance are
mainly because that (i) the information on faulty data is not
optimally used in PCA; and (ii) FDA is not so effective for
discriminating the classes that share the same mean [27].
In contrast, MDA can perform well for such classes.
Remark 3: As shown by this example, the objectives of

PCA and FDA (or PLS) in dimension reduction are not
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TABLE 1. Faults used in case study 1.

directly related to the separability between faulty and normal
classes, as reflected by the distribution of data points of the
two classes in the latent space. In contrast, the proposedMDA
approach can better distinguish the classes in the latent space.
For our method, by maximizing the KL-divergence, the resul-
tant loading vectors can project the faulty and normal data
into the low-dimensional space with the largest separability.

B. TENNESSEE EASTMAN PROCESS
HereMDA is compared to PCA- and FDA-based methods for
the Tennessee Eastman process (TEP), which is a benchmark
widely used for the comparison of various fault detection
methods [2]. The TEP was created based on a simulation of
a real industrial process, a detailed description of which can
be found in [2].

Twenty-one fault datasets were produced using the prepro-
grammed faults (Faults 1–21). In addition, a normal operat-
ing dataset was produced under NOC (with no faults). For
each fault, three data sets (training, validation, and testing
data) are produced. The training and validation data are for
model building and the testing data are for model testing.
The training and validation datasets contain 400 observations.
The testing dataset for each fault contains 960 observations,
where each data set starts with normal operations and after
the 160th observation, faults are triggered. Each data sample
consists of all manipulated andmeasurement variables except
the agitation speed of the reactor’s stirrer, i.e., 52 process vari-
ables. The KL-divergence for the MDA-based method was
calculated by approximating data as Gaussian distributions.

1) CASE STUDY 1: FAULTS 3, 9, 11, 15, AND 19
In this case study, the performance of MDA-, PCA-, and
FDA-based methods for detecting faults is examined for
Faults 3, 9, 11, 15, and 19 generated by the TEP (see Table 1).
These five faults were selected as being among the most
difficult to detect [2], [28]. To make a fair comparison of
different detection methods, we compare the fault detection
rates (FDR) of detection algorithms while maintaining the
false alarm rates in the same level of α = 1% in this work.
The reduction order for PCA is selected as k=11 according
to [29], and for FDA is selected as k=1 since FDA can
only extract one loading vector for binary classification. The
reduction order for MDA determined by cross-validation is
depicted in Table 2.

The FDR produced by the three detection approaches are
provided in Table 3, where the overall FDR for PCA and FDA
for the five faults was only 16.2% and 22.3%, respectively.

FIGURE 1. A comparison of the 1D projections of PCA, FDA, and MDA for
the 2D datasets (‘o’ denotes normal operating data, and ‘+’ denotes
faulty data): (a) actual data, (b) data projected onto the PCA vector,
(c) data projected onto the FDA vector, and (d) data projected onto the
MDA vector.

MDAoutperformed PCA and FDA in detecting all five faults,
and had an overall FDR a factor of 2.7 and 2.0 higher than
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TABLE 2. The reduction order of MDA model for case study 1 in TEP.

TABLE 3. The FDR for PCA, FDA, and MDA for Faults 3, 9, 11, 15, and 19
(For each method, a fault was indicated if either the T 2 or Q statistics
violated threshold).

PCA and FDA, respectively. The FDR for MDA is a factor
of 3.8, 6.8, 1.4, 2.7, and 11.8 higher for Faults 3, 9, 11, 15,
and 19 in comparison with PCA. Compared to FDA, the fault
detection rate for MDA is a factor of 2.0, 2.3, 1.1, 1.5, and
7.9 higher for Faults 3, 9, 11, 15, and 19, respectively.

None of the methods obtained a high FDR for Faults
3 and 9. Given that MDA maximizes the distance between
the distributions for the normal and fault data, the main
cause for the bad performance in detection of Faults 3 and
9 reported in [29] is from the property of faults (i.e., the
faults are inherently hard to be detect/separate). However, our
method still shows significant improvement compared with
PCA and FDA (e.g., for Fault 3, our method gives 6.5% fault
detection rate, against 3.2% for FDA and 1.7% for PCA).
Such improvement is dramatic given the inherent difficulty
of detecting these two faults. For Faults 11, 15, and 19, the
FDRs for the MDA-based approach increase considerably
compared with the PCA-, and FDA-based methods. For Fault
19, MDA had about an order of magnitude higher successful
detection rate than PCA and FDA. The extent to which the
methods are sensitive to Fault 19 is shown in Figure 2. The
MDA-based approach much more persistently indicates a
fault in comparison with the other methods. The differing
results indicate that the poor fault detection performance for
Faults 11, 15, and 19 was from limitations of the PCA- and
FDA-based methods rather than because the normal and fault
data are inseparable. PCA and FDA do not determine projec-
tions that optimally separate the data to detect the faults, and
significantly improved fault detection is obtained by using
optimal separation, i.e., MDA.

2) CASE STUDY 2: ALL 21 FAULTS
All 21 faults from the TEP simulator are used to further
verify the effectiveness of the proposedMDA-based approach
in comparison with the PCA- and FDA-based approaches
for fault detection (see Figure 3). The MDA-based method
outperformed both the PCA- and CVA-based methods for
each of the 21 faults. It confirms that the superior fault
detection obtained by the objective of directly maximizing
the divergence between normal operating data and faulty data
during dimensionality reduction. For example, the FDR for

FIGURE 2. Detection results for Fault 19 for (a) PCA-based, (b) FDA-based,
and (c) MDA-based approaches.

theMDAdetectionmethod for Fault 10 is 73.2% in contrast to
57.1% to the PCA-based method, which is more than a factor
of 1.3 improved detection. The FDR for the MDA detection
approach is factor of 1.3 better than that for the FDA detection
method (73.2% and 57.9%).
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FIGURE 3. Fault detection rates of the PCA-, FDA-, and MDA detection
approaches for the 21 faults.

TABLE 4. Summary of detection results for PCA, MDA, and FDA for all
21 faults.

Table 4 displays the overall FDRs for all faults using the
PCA-, FDA-, and MDA-based approaches. The FDR of the
MDA method is 14.6% and 8.2% higher than the PCA and
FDA approaches respectively, which further verify the better
performance of the proposed MDA-based detection method.

In addition, Table 5 displays the detection delays for the
PCA-, FDA-, and MDA-based methods, in which the detec-
tion delay is recorded when the first three consecutive values
for the statistics (T 2or Q) have violated the threshold. For
nearly all of the faults, theMDA-based method had the small-
est detection delay than the PCA- and FDA-based methods.
By examining Figure 3 and Table 5, it can be concluded that
the fault detection approach with the highest FDRs usually
have the shortest detection delays.
Remark 4: For the example on TEP, for Case Study 1,

we used the data from each of the Faults 3, 9, 11, 15, 18 as
the faulty data. For each fault, we trained the MDA algorithm
and used it for detection. Similarly, for Case Study 2, we used
each of the 21 classes of faulty data for training the MDA
algorithm and then testing the fault detection performance.
Overall, the size of the faulty data in our case studies is
balanced with the normal data for each training. It is thus an
interesting future topic to study the impact of overly small
faulty data size on the performance of the proposed MDA
algorithm.
Remark 5: Note that for our two case studies on the TEP,

some faults such as Faults 3, 9, 13, and 15 are incipient faults
with slight features [35]. These respective faults are: step
change of D feed temperature, random variation of D feed
temperature, slow drift in the reaction kinetics, and sticking
fault of condenser cooling water valve. All these faults are
small in amplitudes and are thus not easy to be detected [35].
However, the results from the two case studies above have
shown the advantageous performance of our MDA algorithm
against the PCA and FDA. Specifically, for Faults 3 and 9,
the MDA gives 6.5% and 5.4% fault detection rate (Table 3),
much higher that 1.7% and 0.8% for the PCA method, and
3.2% and 2.4% for the FDA method. For Faults 13 and 15,
as shown in Figure 3, the fault detection rate of MDA is also
higher than that from FDA and PCA. These results together

TABLE 5. Summary of detection delays for PCA, FDA, and MDA for all
21 faults.

show that the proposed approach is also effective in fault
detection if we only have normal and incipient faulty data for
training.

V. CONCLUSION
This article presents a fault detection approach based on max-
imized divergence analysis (MDA). MDA generates lower
dimensional representations of the original data that maxi-
mize the retained KL-divergence between normal operating
data and faulty data during the step of dimensionality reduc-
tion. Two detection statistics, i.e., T 2 and Q, are put forward
using the retained and discarded loading scores in the MDA
model. The proposed MDA-based approach outperforms the
PCA- and FDA-based approaches for 2D synthetic datasets
and for the 21 faults in the Tennessee Eastman process, partic-
ularly for faults that are difficult to detect. To further enhance
the detection performance on data with nonlinear dynamics,
MDA can be extended by utilizing kernel techniques.
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