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Fault Diagnosis in Industrial Processes by Maximizing Pairwise
Kullback–Leibler Divergence

Qiugang Lu , Member, IEEE, Benben Jiang , Member, IEEE, and Eranda Harinath

Abstract— Fault diagnosis gains increasing attention for its
ability to enhance process safety and efficiency. This brief
proposes a maximized ratio divergence analysis (MRDA)
approach for fault diagnosis, which maximizes the pairwise ratio
Kullback–Leibler (KL) divergence between each pair of classes
during the dimensionality reduction step. In addition, an iterative
algorithm based on deflation techniques is put forward for learn-
ing the loading vectors of MRDA. The proposed MRDA-based
approach allows for improved power of fault diagnosis because of
the following advantages over classical monitoring methods. First,
MRDA maximizes the pairwise ratio divergence between each
pair of classes, which directly leads to enhanced classification
performance in the low-dimensional space. Moreover, MRDA is
less likely to be dominated by “outlier” classes, since its objective
is an average of ratio divergence, thereby facilitating the proposed
method to be beneficial to the classification of imbalanced faulty
classes. The effectiveness of the MRDA-based approach for fault
diagnosis is verified by the Tennessee Eastman process (TEP).

Index Terms— Data-driven method, fault diagnosis,
Kullback–Leibler (KL) divergence, process monitoring,
Tennessee Eastman Process (TEP).

I. INTRODUCTION

FAULT diagnosis, which determines the type and cause
of faults, can be rather challenging for modern industrial

processes featured by a large number of process variables
and complicated correlations among variables due to process
dynamics and controllers [1]. With the availability of enor-
mous process data collected from computer control systems,
data-driven fault diagnosis has shown its exceptional value
in promoting informed decision-making and enhancing the
efficient and safe operation of industrial processes [2]–[4].

The performance of data-driven fault diagnosis can be
improved by using dimension reduction methods. The most
widely applied linear methods for fault diagnosis include
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principal component analysis (PCA) [5], [6], partial least
square (PLS) analysis [7], and Fisher discriminant analysis
(FDA) [8], [9]. A multivariate statistics approach that inte-
grates PCA with discriminant analysis was developed for
diagnosing anomalies [10], [11]. Alternately, a PLS method
was proposed in conjunction with the discriminant algorithm
for fault diagnosis [12]. The dimension reduction method
based on the FDA technique has been extensively studied
for diagnosing abnormal events [8], [9], [13], [14]. The
objective of FDA is to extract a group of projection vectors
that maximize the scatter between different classes while
minimizing the scatter within each class. However, FDA only
possesses optimality for the classification problem with equal
covariance matrices for different classes [14], [15]. Classi-
cal nonlinear process-monitoring techniques include manifold
learning-based and deep learning-based methods. Manifold
learning methods discover and map data from the original
high-dimensional space to the local low-dimensional man-
ifolds [30]. Deep learning-based approaches employ deep
neural networks to extract complex and nonlinear struc-
tures in the data for fault diagnosis, in which various
autoencoder-based methods receive extensive attention for
capturing nonlinear and structured manifold embedding [31].
Excellent reviews on data-driven fault diagnosis methods are
available in [1], [4], [16], [17], and [25]–[27].

Recently, methods based on Kullback–Leibler (KL) diver-
gence, an effective way to measure the difference between
the probability density functions [18], have attracted the
interest of many researchers and practitioners [28]. A large
value of KL-divergence indicates that the distributions of
two faulty data sets are well separated, thereby indicating
that the faults are easy to diagnose. A value close to zero
indicates that the two probability density functions are similar,
i.e., the discrimination of one fault from another is difficult.
KL divergence is used to measure the dissimilarity between
the probability distributions of the faulty data collected from
induction motor systems in [19], where enhanced diagnosis
performance was observed. In addition, Zeng et al. [20] devel-
oped monitoring statistics based on KL divergence to diagnose
large-scale processes, where KL divergence-based statistics
were shown to be more sensitive than the conventional multi-
variate statistics. More recently, the authors developed a fault
diagnosis method based on the KL-divergence for diagnosing
multiple and unknown faults [3]. For all these contributions,
KL divergence is mainly used as a measure of the difference
between the underlying distributions of faulty data with that
of the prescribed faulty classes. However, no dimensionality
reduction, which plays a critical role in process monitor-
ing, was involved in implementing KL divergence to fault
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diagnosis. For modern industrial processes featured by high
dimensions, dimensionality reduction in general acts as a step
of feature extraction to enhance the performance of fault
diagnosis. Its advantages mainly arise when the dimension of
the observation space is large while the number of samples
is small, which is common in modern industrial processes.
Under this circumstance, the statistical parameters of the
process variables such as the mean and the covariance matrix
are subject to large inaccuracies that often lead to adverse
effects for statistical inference including fault classification.
Moreover, the existence of correlation or even collinearity
between variables is very common and this also motivates
the dimensionality reduction to extract representative features
prior to fault detection or diagnosis [1]. For fault diagnosis,
FDA is widely used but it yields degraded performance when
distributions of fault classes are imbalanced, e.g., an outlier
class exists that is far from the rest of the classes. Moreover,
FDA is only applicable when all fault classes share the same
covariance matrix. To address these issues, in this brief,
a fault diagnosis approach named maximized ratio divergence
analysis (MRDA) is proposed, in which the objective is to
maximize the pairwise ratio KL-divergence between each pair
of classes during the dimensionality reduction procedure. The
main contributions of this work are summarized as follows.

1) We propose an MRDA approach for dimensionality
reduction for fault diagnosis, and this approach uses ratio
KL-divergence to address imbalanced classification in
which some fault classes are far away from the rest.

2) We provide an algorithm using the deflation technique
to solve the optimization problem of maximizing the
average ratio KL-divergence between classes.

3) We further present an extension of our method to the
dynamic MRDA approach to handle serial correlations
among data samples. It is shown from simulation exam-
ples that dynamic MRDA can significantly improve the
fault diagnosis performance.

The rest of this brief is organized as follows. The KL
divergence is briefly described in Section II. The proposed
MRDA-based approach for fault diagnosis is developed in
Section III. The effectiveness of the proposed method is
demonstrated in the Tennessee Eastman process (TEP) in
Section IV, which is followed by conclusions in Section V.

II. SYMMETRIC KULLBACK–LEIBLER DIVERGENCE

The KL-divergence, which serves as the basis of the pro-
posed fault diagnosis approach, is briefly reviewed in this
section. More details of KL-divergence can be found in [18].

The symmetric KL-divergence is a measure of the difference
between two probability density functions, and the divergence
between the classes i and j is defined as [18]

D(pi , p j ) =
∫

pi (x) ln
pi(x)

p j (x)
+ p j (x) ln

p j (x)

pi (x)
d x (1)

where pi and p j denote the distributions of data of classes i
and j , respectively.

The KL-divergence (1) is nonnegative, i.e.,D(pi , p j ) ≥ 0,
with equality if and only if pi = p j . A large value of the

KL-divergence is associated with the distributions pi and p j

being well discriminated so that the diagnosis of faults is easy.
If pi and p j follow multivariable Gaussian distributions,

i.e., pi ∼ N(μi ,�i ) and p j ∼ N(μ j ,� j ) with �i and � j

being positive-definite, the KL-divergence can be computed
explicitly as [18]

D(pi , p j ) =
∫

pi (x) ln
pi(x)

p j (x)
+ p j (x) ln

p j (x)

pi (x)
d x

= 1

2
tr
{(

�i − � j
)(

�−1
j − �−1

i

)}

+ 1

2
tr
{(

�−1
i +�−1

j

)
(μi −μ j )(μi − μ j )

T}
(2)

where (μi ,�i ) and (μ j ,� j ) denote the means and covariance
matrices of the classes i and j data, respectively, and A−1,
AT, and tr {A} denote the inverse, transpose, and trace of
matrix A.

III. MAXIMIZED RATIO DIVERGENCE ANALYSIS

METHOD FOR FAULT DIAGNOSIS

A. Dimension Reduction Technique Based on MRDA

A large value of D(pi , p j ) implies that the faults pi and
p j are easy to be diagnosed, while a value of D(pi , p j )
close to zero indicates that the faults pi and p j are difficult
to be classified. Therefore, maximizing D(pi , p j ) during
the dimension reduction procedure would be beneficial to
diagnosing faults. In other words, the approach that produces
a large KL-divergence [i.e., a large value of D(pi , p j )] during
the dimensionality reduction step possesses good performance
of fault diagnosis. The objective of maximizing KL-divergence
can be described as

max
w

D(pw
i , pw

j ) =
∫

pw
i (wTx) ln

pw
i (wTx)

pw
j (w

Tx)

+ pw
j (w

Tx) ln
pw

j (wTx)

pw
i (wTx)

d x (3)

where pw
i and pw

j denote the probability density functions
of classes i and j in the reduction space, respectively, each
column of w ∈ Rm×k represents a loading vector, and k
denotes the order of dimension reduction.

In fault diagnosis, a common scenario is to handle data with
multiple classes. To this end, objective (3) can be extended by
employing the pairwise technique as

max
w

Dw := 2

c(c − 1)

∑
1≤i< j≤c

D
(

pw
i , pw

j

)
(4)

where c denotes the number of faults. In order to avoid the
issue in which several faulty classes inappropriately dominate
the dimensionality reduction procedure, a ratio divergence
instead of the original KL-divergence is used, which is defined
as

max
w

D̄w := 2

c(c − 1)

∑
1≤i< j≤c

D̄(pi , p j )

= 2

c(c − 1)

∑
1≤i< j≤c

D
(

pw
i , pw

j

)
D(pi , p j )

(5)
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where D̄(pi , p j ) := (D(pw
i , pw

j )/D(pi , p j )) denotes the
ratio KL-divergence between class i and class j . Since 0 ≤
D(pw

i , pw
j ) ≤ D(pi , p j ) [18], it can be obtained that ratio

divergences D̄(pi , p j ) possess

0 ≤ D̄(pi , p j ) ≤ 1 (6)

and it can be further concluded that the average of ratio
divergence D̄w also satisfies 0 ≤ D̄w ≤ 1.

If the data of class i follow a multivariable Gaussian
distribution, i.e., pi ∼ N(μi ,�i ), in the reduction space,
the projected variable pw

i follows pw
i ∼ N(wTμi ,w

T�i w).
Then, objective (5) can be explicitly expressed as

max
w

D̄w = 1

c(c − 1)

∑
1≤i≤c

∑
j �=i

tr{(wT�i w)−1wT Mi j w} − k

D(pi , p j )

(7)

where Mi j = � j + (μi − μ j )(μi − μ j )
T and D(pi , p j ) is

explicitly expressed as (2).
It is worth mentioning that the form of average of ratio

divergence used in the objective functions (5) or (7) facilitates
the proposed approach to be less likely influenced by “outlier”
data sets during the dimension reduction step, since each ratio
divergence D̄(pi , p j ) has a property of 0 ≤ D̄(pi , p j ) ≤ 1.
This enables the MRDA approach to be particularly suitable
for the fault diagnosis tasks with imbalanced data, where
some classes are relatively far away from the remaining ones.
In contrast, standard FDA methods perform poorly on these
data sets, because FDA can be easily dominant by outlier
classes during the procedure of dimensionality reduction,
thereby making it lose classification ability for the majority
of classes [14], [21].

B. Optimization Algorithm for Learning Loading Vectors

This section investigates solving the optimization prob-
lem (7). A numerical algorithm based on the quasi-Newton
technique is used for learning a single loading vector and
then is extended to learn multiple loading vectors (i.e., loading
matrix) by employing the well-known deflation technique [1].

From (7), the objective function for learning a single loading
vector w ∈ Rm×1 is

max
w

D̄w = 1

c(c − 1)

∑
1≤i≤c

∑
j �=i

tr{(wT�i w)−1wT Mi j w} − 1

D(pi , p j )
.

(8)

The gradient of D̄w with respect to w is computed as

∂ D̄w

∂w
= 1

c(c − 1)

∑
1≤i≤c

∑
j �=i

2

D(pi , p j )

×(Mi j w(wT�i w)−1 − �iw(wT�i w)−1

× (wT Mi j w)(wT�i w)−1). (9)

Thus, the loading vector w ∈ Rm×1 can be obtained by the
quasi-Newton algorithms, and its corresponding loading score
d can be computed as d = wTx.

Learning the loading matrix w ∈ Rm×k by using the
deflation technique is investigated below. Let the data of class

i with ni samples be stacked into a matrix as Xi ∈ Rni ×m(i =
1, 2, . . . , c). Similar to PCA and PLS [1], the data matrices
for Xi can be represented as the sum of a series of rank one
matrices, namely

Xi =
k∑

r=1

di,r wT
r + Ei , (10)

where wr (r = 1, 2, . . . , k) denotes the r th loading vector and
di,r is the corresponding r th loading scores for class i data
(i.e., di,r = Xi wr ); Ei denotes the residual matrices.

Thus, the data matrices Xi remained for calculating the
(r + 1)th loading vector wr+1 can be expressed as

Xi,r = Xi,r−1 − di,r wT
r . (11)

Then, the means and covariance matrices for Xi,r , i.e., (μi,r ,
�i,r ) can be obtained. Therefore, the objective function for
learning the (r + 1)th loading vector wr+1 becomes

max
w

D̄w = 1

c(c − 1)

∑
1≤i≤c

∑
j �=i

tr{(wT�i,r w)−1wT Mi j,r w}−1

D(pi , p j )

(12)

where Mi j,r := � j,r + (μi,r − μ j,r )(μi,r − μ j.r )
T. Similarly,

wr+1 can be computed by using the aforementioned numerical
optimization algorithm for solving (8). This procedure is
continued until all k loading vectors w ∈ Rm×k are obtained.
The corresponding loading score d can be obtained as d =
wTx.

Observations are then classified in the k-dimensional space
of MRDA using the discriminant function [1], [8]

gi(x) = −1

2
(x − μi )

Tw(wT�i w)−1wT(x − μi )

− 1

2
ln[det(wT�iw)]. (13)

An observation x is categorized to class i if

gi (x) > g j (x) ∀ j �= i. (14)

Remark 1: The MRDA method can be extended to handle
serial correlations in the data by augmenting the observation
vectors x in (3) with time lags, that is

X =

⎡
⎢⎢⎢⎣

xT
t xT

t−1 · · · xT
t−l

xT
t−1 xT

t−2 · · · xT
t−l−1

...
...

. . .
...

xT
t+l−n xT

t+l−n−1 · · · xT
t−n

⎤
⎥⎥⎥⎦ . (15)

Remark 2: Compared with traditional methods such as FDA
for fault diagnosis, our MRDA method involves a slightly
heavier computation when solving the iterative optimizations.
However, this does not become a critical issue in that the
computation mainly lies in the offline training stage. Moreover,
the extension of our approach to non-Gaussian variables may
require density-estimation techniques such as kernel density
estimation, which requires a careful theoretical treatment,
which is one future direction to improve the performance of
our current method.
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Remark 3: In practice, imbalanced fault classes may be
present in which some fault classes have far more samples than
the others. Common approaches to resolve such issues is to
oversample the minority classes or undersample the majority
classes. Another solution is to add different weights to the
KL-divergence of fault classes with imbalanced samples. This
idea is analogous to the one in [29], which modifies the
KL-divergence as a distance metric for imbalanced classes.

IV. APPLICATION TO TENNESSEE EASTMAN PROCESS

The TEP is a well-known benchmark process for com-
paring various fault diagnosis algorithms by simulating a
realistic industrial process with high fidelity [1], [22], [23].
In this section, TEP is adopted to evaluate the MRDA-based
approach for diagnosing faults in comparison with various
other methods. Two data sets (i.e., training and testing data)
were generated with a sampling interval of 3 min for each
fault. The training data are for developing diagnostic models
and the testing data is for testing the proficiency of the models.
Each training and testing data set contains 480 and 800 sam-
ples, respectively, in which each data observation consists
of 52 process variables including all the manipulated and
measurement variables except for the reactor’s stirrer agitation
speed. Note that process faults are defined as the operation
events that deviate from normal operating conditions [1], [9].
All the faults considered in the examples below represent
certain irregular scenarios that upset the process and drive it
to the out-of-control status, indicated by the drifted values of
the corresponding variables against nominal values.

A. Case Study 1: Faults 3, 4, and 11

In this case study, Faults 3, 4, and 11 produced by the TEP
(see Table I) are used to examine the performance of various
fault classification methods discussed in this brief with the
imbalanced distribution of data. The methods under investi-
gation are FDA, method from [3] (which does not involve
dimensionality reduction), classification without dimensional-
ity reduction [i.e., only using the discriminant function (13)
with w as an identity matrix], MRDA without ratio, MRDA,
and dynamic MRDA with lag l = 3. Faults 4 and 11 are
associated with the inlet temperature of the reactor cooling
water but different in the type of faults [1]. In contrast to these
two faults, Fault 3 involves a different process variable—D
feed temperature [8].

The classification results for Faults 3, 4, and 11 using the
six methods are listed in Table II. For the FDA method, Faults
3 and 11 are misclassified most of the time and Fault 4 has a
relatively low misclassification rate. This may be because the
objective of FDA does not consider the uneven separations
between the classes and may be dominated by some outlier
classes. The method from [3], although incorrectly diagnosing
Fault 4 most of the time, can separate Faults 3 and 11 with high
accuracy, leading to slightly improved performance relative to
FDA. The method without dimensionality reduction, only rely-
ing on discriminant function (13), yields superior classification
performance compared with the former two. One possible
explanation is that the number of variable dimensions without

TABLE I

DESCRIPTION OF FAULTS SELECTED FOR CASE STUDIES

TABLE II

CLASSIFICATION RESULTS FROM DIFFERENT

METHODS FOR CASE STUDY 1

stacking dynamic lags, i.e., l = 1, is small enough compared
with the number of samples, and thus, the gained information
in most directions in the observation space can outweigh the
inaccuracies in the estimated statistical parameters with finite
samples. However, it does not imply that dimensionality reduc-
tion is not beneficial to fault classification. In fact, as shown
below, the dimensionality reduction can indeed elevate the
classification performance with properly chosen loadings. For
the MRDA without ratio, it can significantly improve the
classification performance by reducing the misclassification
rate to 6.1%, in contrast to 39.3% for FDA and 34.2% for
the method from [3]. MRDA with ratio can further reinforce
the classification performance. However, its increment in clas-
sification performance compared with MRDA without ratio is
minor. The reason is that, for this case study, the pairwise
KL-divergences between the three faults do not differ enough
to the extent of causing excessive difference between these
two methods in classifying these faults. In fact, the computed
pairwise KL-divergence values [see (2)] for this case study are,
respectively, D3,4 = 127.7, D3,11 = 64.2, and D4,11 = 153.7.
In the next case study, the necessity of including a ratio into
the objective function of MRDA will be more clearly revealed
with a highly uneven separability among faults. To account for
the serial correlations in data samples, we test the performance
of dynamic MRDA with ratio, which can further boost the fault
classification performance, as shown in Table II.

B. Case Study 2: Faults 1, 3, 4, 11, 13, and 14

In this case study, six faults (i.e., Faults 1, 3, 4, 11, 13, and
14, as specified in Table I) generated by the TEP simulator
are further used to evaluate the performance of the proposed
MRDA-based approach.

The first two loading vectors (a = 2) of each faulty data
set extracted by four methods, FDA, MRDA without ratio,
MRDA, and dynamic MRDA (lag l = 3), are displayed
in Figs. S1(a)–(d) of the Supplementary Material, respectively.
The bar plots in Fig. 1 represent the pairwise KL-divergences

Authorized licensed use limited to: Tsinghua University. Downloaded on September 02,2022 at 04:20:28 UTC from IEEE Xplore.  Restrictions apply. 



784 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 29, NO. 2, MARCH 2021

TABLE III

KL-DIVERGENCE VALUES AMONG ALL PAIRS
OF FAULTS 1, 3, 4, 11, 13, AND 14

Fig. 1. KL-divergence values of each pair of classes in the lower dimensional
space for Case Study 2 produced by the methods of FDA, MRDA without
ratio, MRDA, and dynamic MRDA.

in the reduction space of each two different data sets in an
ascending order for these methods. Table III summarizes the
KL-divergence values for all pairs among these six faults in
the original observation space. The KL-divergence has a highly
imbalanced distribution among all pairs with the maximum as
2804.9 and the minimum as 64.2.

As shown in Figs. S1(a)–(c) of the Supplementary Mate-
rial, the projected data generated by MRDA or dynamic
MRDA have better visual performance than those by FDA
or MRDA without ratio, in terms of separating classes from
each other. Furthermore, the bar plots in Fig. 1 show that
the KL-divergence values in the lower dimensional space
generated by MRDA without ratio are larger than those by
FDA for class pairs from 8 to 15. However, for the pairs
from 2 to 7, the values from FDA are slightly larger than
those from MRDA without ratio, which has almost zero
KL-divergence values for these pairs. These small values from
MRDA without ratio significantly worsen the classification
performance of this method, as shown in Table III. On the
other hand, for FDA, the KL-divergence values for pairs 2–7,
although small, can assist FDA in separating relevant classes,
as supported by the superior performance of FDA than MRDA
without ratio in Table IV. This observation clearly highlights
the importance of balanced distribution of KL-divergence
among all pairs after dimensionality reduction. Therefore,
by purely seeking maximization of KL-divergence during
dimensionality reduction, as is the method of MRDA without
ratio, may contrarily degrade the classification performance.
In contrast, the MRDA method results in a much more
balanced distribution of KL-divergence among all pairs after
dimensionality reduction, as shown in green bars in Fig. 1.
As a result, the average misclassification rate is reduced to
22.6%. Furthermore, the dynamic MRDA method generates

TABLE IV

MISCLASSIFICATION RATE FOR FDA, MRDA WITHOUT RATIO,
MRDA, AND DYNAMIC MRDA FOR CASE STUDY 2

the largest KL-divergence values for all pairs with the most
balanced distribution of KL-divergence, and thus leads to the
best misclassification performance (11.2%).

The classification results of these fours methods for Faults 1,
3, 4, 11, 13, and 14 are detailed in Table IV, where the
dimensionality reduction order a for the four methods is
selected as a = 3. As displayed in Table IV, FDA incorrectly
diagnoses Faults 3, 11, 13, and 14. MRDA without ratio gives
even worse results than FDA, for the reason given in the
previous section. In contrast, MRDA with ratio presents a
much better performance, with 22.6% misclassification rate,
with a factor of 1.5 lower than that of FDA. The main
reason is that MRDA employs an objective function in the
form of averaged pairwise ratio divergence between each pair
of classes, making it robust to outlier faulty data sets. For
the dynamic MRDA, the classification performance is further
accelerated by almost a factor of 2 than MRDA, by addressing
the temporal correlations of process variables.

V. CONCLUSION

This brief presents a fault diagnosis approach based on
MRDA. MRDA generates lower dimensional representations
of the original data that maximizes the averaged pairwise ratio
KL-divergence between each pair of faulty data sets during
the dimensionality reduction procedure. In order to solve the
problem of maximizing ratio divergence, an iterative algorithm
is proposed to learn projection loadings. The advantage of
using the MRDA-based fault diagnosis approach is demon-
strated with the data collected from TEP, and the simulation
results show that the proposed method outperforms FDA-based
and other KL-divergence-based methods. It is also shown that
using dynamic MRDA can yield even superior performance
for fault classification. In the future work, MRDA methods for
non-Gaussian process variables can be investigated by kernel
density estimation techniques. MRDA-based fault diagnosis
with imbalanced sample numbers of fault classes is another
direction for our future work.
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