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Dynamic Bhattacharyya Bound-Based
Approach for Fault Classification in

Industrial Processes
Benben Jiang , Member, IEEE, and Bofan Zhu

Abstract—Data-driven fault diagnosis has attracted in-
creasing research interest with a recent trend of aiming at
large-scale and complex systems. In this article, we pro-
pose a method under a probabilistic framework, named
dynamic Bhattacharyya bound (DBB), to extract features
for fault diagnosis. An information criterion is adopted to
determine the order of dimensionality reduction and time
lags when applying the proposed approach. Compared with
conventional diagnostic approaches, the proposed DBB ap-
proach has several advantageous features. First, the DBB
approach minimizes an upper bound of the Bayes error
which is a direct manifestation of the misclassification rate.
Second, pairwise Bhattacharyya bounds between different
faults are summed up in the objective function, enabling it
to address the fault diagnosis of multiple faults that may
have large overlaps. The proposed method is validated
through the Tennessee Eastman process and it shows
advantageous performance than other methods such as
Fisher discriminant analysis (FDA), dynamic FDA, and
LP-DFDA.

Index Terms—Bayes error, dimensionality reduction
(DR), dynamic Bhattacharyya bound (DBB), fault classifica-
tion, Tennessee Eastman process (TEP).

I. INTRODUCTION

FAULT diagnosis is an essential procedure to guarantee safe
and efficient operations of industrial processes. With an

increasing demand for production efficiency, energy conserva-
tion, and environmental protection, modern industry presents a
new trend featured by a large amount of operation units and
complex interactions among interconnected units. As a result,
the occurrence of process faults may lead to huge economic
losses and severe safety issues due to the propagation of their
effects to downstream and neighboring units. Therefore, it is
critical to detect and diagnose the faults timely with process
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monitoring techniques, including fault diagnosis, to ultimately
improve the reliability and safety of the entire process plant
[1]–[4].

Specifically, for fault diagnosis (or equivalently, fault classi-
fication), the objective is to classify the types of faults that have
already occurred, so that corresponding maintenance endeavors
can be deployed to recover the system from downtime. Among
the many fault diagnosis techniques, the data-driven approach
plays an important role for large-scale and complex industry
processes, where traditional methods based on qualitative and
empirical knowledge become impractical given the unavailabil-
ity of physical models for such large systems. On the other hand,
the accessibility of large amount of historical data reflecting the
operation mechanism and state makes it possible to extract fault
signatures without the necessity of physical models. In data-
driven fault diagnosis, the data produced under different fault
types are divided into different categories, and the types of faults
can be identified by classifying their data to the corresponding
categories. Principal component analysis (PCA) [5], [6], Fisher
discriminant analysis (FDA) [8], [9], partial least squares (PLS)
[10] are basic data-driven approaches to improve the proficiency
of fault diagnosis via dimensionality reduction (DR). The PCA
method reduces the dimensionality of the raw data by seeking
several principal coordinates along which the covariance of
principal components is maximized. Thus, in PCA, the major
variations in the raw data are reserved and small variations such
as noise are discarded. The FDA method defines a between-class
scatter matrix characterizing the variations among different
fault classes, and a within-class scatter matrix representing
the variations within fault classes. Optimal projection vectors
are obtained by maximizing the scatter between classes while
minimizing the scatters within classes. The PLS method stores
fault information in the dependent matrix and process variables
in the independent matrix. This method finds optimal loading
vectors that maximize the covariance between fault matrix and
process variable matrix. Thus, the correlation between predicted
variables and predictors is maximized and the large variations
within the predictors are reserved simultaneously. For all the
methods mentioned above, after DR, discriminant functions are
constructed in different ways for fault classification [8], [11],
[12]. In addition, data-driven methods have also been widely
used in industrial cyber-physical systems [7], [23], together with
extensive development of MATLAB toolbox [26].
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In statistical process monitoring, the discriminant analysis
methods are carried out assuming the independent and identical
distribution (i.i.d.) of samples. Such an assumption only holds
when the sample interval is sufficiently large, which happens
only to processes with slow dynamics [13]. However, most in-
dustrial data have strong serial correlations and neglecting such
correlation information may lead to increased false detection
and diagnosis results. To handle these scenarios, FDA-, PCA-
and PLS-based methods are enhanced by stacking past variable
values with current variable values [14]. In this way, serial
correlation information can be captured when performing DR
[15]. In addition, the overlaps between different types of fault
data can be reduced, which improves the performance of fault
diagnosis [15].

In general, any decision rule has a probability of classifying a
sample to a wrong class due to the randomness of samples. Bayes
error, the probability that a sample is assigned to the wrong class
[16], can evaluate the performance of a decision rule. It measures
the lowest classification error associated with a classifier. The
Bayes error always exists due to the irreducible error in classifi-
cation; in practice, different classes always have certain overlap
in the true population. Thus, it is necessary to account for the
Bayes error during DR to optimize the classifier performance.
Based on the framework of Bayes error, a group of classification
techniques, known as the Bayes error feature selection methods,
have been proposed and implemented in a variety of fields, such
as pattern recognition [16] and speech recognition [17]. Some of
these methods are designed to find upper bounds for Bayes error,
such as Chernoff bound [18] and Bhattacharyya bound (BB)
[19]. Some of these methods are designed to find the diversity
of data information, such as interclass divergence [20]. In other
DR methods, such as FDA, selecting the projection vectors
optimizes a criterion that maximizes the ratio between interclass
and intraclass scatter matrices. However, such a criterion is not
a direct quantification of the classification accuracy. In contrast,
our proposed approach, during DR, selects the loadings that
directly minimize the Bayes error of the subsequent discriminant
function. This interpretation implies that our approach can yield
a classification performance closer to the theoretical optimum
than other DR methods. The criteria used by traditional DR
methods may not be aligned with optimizing the Bayes error of
the adopted discriminant function. Therefore, using the Bayes
error bound to guide the design of classifiers for fault diagnosis
is of great importance to directly improve the classification
performance. Moreover, the BB is shown to have a closed-form
expression for Gaussian variables. This motivates us to use the
BB-based DR for achieving the optimal projection vectors for
fault diagnosis of industrial processes.

In this article, an approach based on BB of Bayes error
is proposed for diagnosing faults. The BB model is further
extended by constructing the data matrix with lagged values of
variables, regarded as dynamic BB (DBB), for better capturing
the dynamic information in the data. Additionally, the optimal
DR order and time lags of DBB are determined by utilizing an
information criterion (IC).

The rest of this article is organized as follows. The BB method
is briefly described in Section II. Section III describes the

DBB-based fault diagnosis method. The validity of the DBB-
based diagnostic method was confirmed by the Tennessee East-
man process (TEP) in Section IV. Finally, Section V concludes
this article.

II. REVISIT OF BB BASED ON BAYES ERROR

Consider a general classification problem, in which we clas-
sify the d-dimensional inputx ∈ Rd into C categories. The prin-
ciple of classification for class i consists of the prior probability
λi and the probability density function pi(x), p = 1, . . . , C. Ob-
servationx is classified into class j if j = argmax1≤i≤Cλipi(x).
The error rate of this classifier is called Bayes error and is defined
as follows:

ε = 1 −
∫
Rd

max
1≤i≤C

λipi (x)dx. (1)

Assume that there is a projection vector w that projects the
d-dimensional vector x of class i into a lower k-dimensional
space:y = f (x) = wx, withw a k × dmatrix of rank k ≤ d.
After DR, the prior probability of class i remains the same but
the density function in reduced space is changed to pwi (y). The
Bayes error then becomes

εw = 1 −
∫
Rp

max
1≤i≤C

λipi
w (y)dy. (2)

Theoretically, DR, in general, induces some information loss
since the mapped variable y in reduced space cannot preserve
all information of the original variable x. Correspondingly, one
usually has ε ≤ εw. For a given proper dimension p, the feature
extraction problem can be transformed into an optimization
problem of finding the optimal projection vector by

ŵ = argmin
w∈Rk×d, rank(w)=k

εw. (3)

However, the Bayer error ε is hard to optimize and instead, an
upper bound of ε BB is utilized to solve the feature extraction
problem above.

Now let us prove the following upper bound for the Bayes
error:

ε ≤
∑

1≤i≤j≤C

√
λiλj

∫
Rd

√
pi (x) pj (x)dx. (4)

Proof: The left equation can be written as [16], [19]

ε =

∫
Rd

C∑
i=1

λipi (x)dx−
∫
Rd

max
1≤i≤C

λipi (x)

=

∫
Rd

min
1≤i≤C

C∑
j �=i

λjpj (x)dx. (5)

There exists a permutation of the indices σx: {1, . . . , C} →
{1, . . . .C} so that the terms λ1p1(x), . . . , λCpC(x) are
listed in increasing order as λσx(1)pσx(1)(x) ≤ · · · ≤
λσx(C)pσx(C)(x)[16], [19]. Thus, for 1 ≤ k ≤ C − 1

λσx(k)pσx(k) (x) ≤
√

λσx(k)pσx(k) (x) λσx(k+1)pσx(k+1) (x).

(6)
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Thus, (5) can be transformed into [16], [19]

min
1≤i≤C

∑
j �=i

λipj (x) =

C−1∑
k=1

λσx(k)pσx(k) (x)

≤
C−1∑
k=1

√
λσx(k)pσx(k) (x) λσx(k+1)pσx(k+1) (x)

≤
∑

1≤i≤j≤C

√
λipj (x) λjpj (x) (7)

which verifies the inequality (4). �
If we assume that the distribution is normal with means µi

and covariance
∑

i, (4) reduces to a simpler expression

ε ≤
∑

1≤i≤j≤C

√
λ

i
λ

j
e−g(i,j) (8)

where

g (i, j) =
1
8

(
µi − µj

)T[∑i +
∑

j

2

]−1 (
µi − µj

)

+
1
2
log

⎛
⎜⎜⎝

∣∣∣∑i+
∑

j

2

∣∣∣√
|∑i|

∣∣∣∑j

∣∣∣

⎞
⎟⎟⎠ . (9)

Equation (9) is called the Bhattacharyya distance between
distributions pi and pj[3].

Similarly, we define the Bhattacharyya distance between pwi
and pwj in our projection space to be gw(i, j). Combining (4) and
(8), the Bayesian error rate (2) in the projection space is obtained
as follows:

εw ≤
∑

1≤i≤j≤C

√
λ

i
λ

j
e−gw(i,j). (10)

Take the right-hand side of inequality (10) as an upper bound
of the Bayes error εw in the projection space. Then, minimizing
its upper bound will give rise to an approximate solution of the
original problem.

III. PROPOSED BB APPROACH FOR DIAGNOSING

MULTIPLE FAULTS

Necessary assumption: We assume that each class of data is
Gaussian distributed with means µi and covariance

∑
i, where

i represents the ith class (or fault).
In order to apply the strategy mentioned in the previous section

to diagnose multiple faults, we need to rewrite the objective
function into the following form for diagnosing C faults:

Jw =
2

C (C − 1)

∑
1≤i≤j≤C

√
λiλje

−gw(i,j). (11)

When dealing with multiclass problems, the objective func-
tion (11) is a sum of all pairwise BBs [21] between faults.
For the problem with many classes, as the number of terms
in the objective function increases, the complexity increases
accordingly. To find the local minimum for such a problem,
the conjugate gradient method is employed in this article. Thus,

the gradient of the objective function (11) with respect to w has
to be derived. According to (9), we have

gw (i, j) =
1
2
trace

{(
wCijw

T
)−1

wBijw
T
}

+
1
2
log

|wCijw
T |√

w
∑

iw
T
√
w
∑

jw
T

(12)

where

Bij =
1
4

(
µi − µj

) (
µi − µj

)T
(13)

Cij =
1
2

(∑
i
+
∑

j

)
, 1 ≤ i ≤ j ≤ C. (14)

Thus, the gradient of Jw with respect to w is shown to be

∂Jw
∂w

= −
∑

1≤i≤j≤C

√
λiλje

−gw(i,j) ∂gw (i, j)

∂w
(15)

where

∂gw (i, j)

∂w
=

1
2

(
wCijw

T
)−1

×
[
wBijw

T
(
wCijw

T
)−1

wCij −wBij

]
+
(
wCijw

T
)−1

wCij−1
2

×
[(

w
∑

i
wT
)−1

w
∑

i
+
(
w
∑

j
wT
)
w
∑

j

]
. (16)

A. DBB Model

In Section II, the BB method assumes that the observation data
at a certain moment are independent of the historical observation
sequence. This assumption is valid only when the sampling
interval is long. However, for most modern industrial processes,
sampling intervals are short and thus, the assumption of serial
independence is not satisfied. In addition to considering the
cross correlation between different variables, autocorrelation
of each variable in time needs to be considered. The DBB
method constructs an augmented matrix by stacking past values
of each variable together with the current observation. In this
way, the dynamic relationship between system variables can be
effectively extracted, thereby accurately describing the dynamic
behavior of the system.

Assume that the observation dataset X without stacking
lagged variables contains d observation variables, and each
variable has n observation values. X is expressed as

X =

⎡
⎢⎢⎢⎣
x11 x12 · · · x1d

x21 x22 · · · x2d
...

...
. . .

...
xn1 xn2 · · · xnd

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
xT

1
xT

2
...

xT
n

⎤
⎥⎥⎥⎦ (17)

where,xi ∈ Rd, i = 12, . . . , n, is ad-dimensional observation
vector. Extending X by appending previous l observations of
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each variable sequentially yields the augmented matrix as

X (l) =

⎡
⎢⎢⎢⎢⎣

xT
t xT

t−1 · · · xT
t−l

xT
t−1 xT

t−2 · · · xT
t−l−1

...
...

. . .
...

xT
t+l−n xT

t+l−n−1 · · · xT
t−n

⎤
⎥⎥⎥⎥⎦ (18)

where xT
t is the d-dimensional observation vector at time t.

The BB model established in (11) and (18) is known as the
DBB. Compared with the method based on a single observation
vector [26], [27], the augmented vector method can capture
dynamic information from the data and improve the performance
of fault diagnosis. However, how to find the optimal lag l is an
essential problem. It risks losing information if l is too small and
overfitting if l is too large. In this article, a variant of the IC [24],
[29] in system identification is used to determine the time lag l,
which will be detailed in Section III-C.

B. Multiple Projections Learning for the DBB Approach

This section introduces a learning method based on the Gram–
Schmidt process [22], which involves seeking a DBB projection
matrix W = [w1,w2, . . . ,wa] ∈ Rd×a , where a represents
the order of dimension reduction. We denote St, Sb, and Sw

as the total scatter matrix, the between-class scatter matrix,
and the within-class scatter matrix, respectively. To ensure the
orthogonality of the columns in the projection matrix W, we add
the constraint W TStW = I with St = Sb + Sw, i.e.,

wT
i Stwj =

{
1, i = j
0, i �= j

. (19)

Assuming that the first r, 1 ≤ r < a, projection vectors, i.e.,
W r = [w1,w2, . . . ,wr] ∈ Rd×r, are known, the representa-
tion of the next projection vector wr+1 can be obtained by

min
wr+1

Jwr+1 =
2

C (C − 1)

∑
1≤i≤j≤C

√
λiλje

−gw+1(i,j)

s.t. wT
r+1

∑
wr+1 = 1,

wT
r+1

∑
wi = 0, i ≤ r. (20)

In order to solve the above problem, we introduce the fol-
lowing equation to create conditions for converting it into an
unconstrained problem:

Ar+1
Δ
= Id −W rW

T
r St. (21)

Obviously, when the rth projection vector is determined,
W r+1 is in the subspace spanned by the column vectors in
formula (21). Thus, there is a vector vr+1 ∈ Rd satisfying

wr+1 = Ar+1vr+1

(Ar+1vr+1)
TStwi = 0 ∀1 ≤ i ≤ r. (22)

Substituting (22) into (20) to eliminate the second constraint,
we obtain an unconstrained optimization problem

min
wr+1

2
C (C − 1)

∑
1≤i≤j≤C

√
λiλje

−gw+1(i,j) (23)

where

gw+1 (i, j) =
1
2
trace{(

Ar+1vr+1Cijv
T
r+1A

T
r+1

)−1
Ar+1vr+1Bijv

T
r+1A

T
r+1

}

+
1
2
log

|Ar+1vr+1Cijv
T
r+1A

T
r+1|√

Ar+1vr+1
∑

iv
T
r+1A

T
r+1

√
Ar+1vr+1

∑
jv

T
r+1A

T
r+1

.

(24)

The conjugate gradient method mentioned in Section II is used
to solve (23). The obtained solution is denoted as v∗

r+1.Then,
the projection vector W r+1 is normalized to satisfy the first
constraint in (22)

wr+1 =
Ar+1v

∗
r+1√

(Ar+1v∗
r+1)

TStAr+1v∗
r+1

. (25)

Since this optimization problem is nonlinear, we use the first
FDA projection vector as the initial conditions to facilitate the
algorithm for better solutions.

C. Information Criterion

There are two hyperparameters to be determined in
Sections III-A and III-B—the time lag l and the DR order a.
Conventionally, cross validation is adopted to determine the
optimal hyperparameters, where a subset of training data is
used as training set and the rest as validation set. Under each
combination of the selected hyperparameter values, n-fold cross
validation can be performed to obtain the averaged validation
error. The optimal hyperparameter values are chosen as those
giving the smallest validation error. However, cross validation
has the disadvantage of heavy computation burden and thus,
is not applicable to small datasets. To this end, we propose a
method based on the following IC:

IC = f (a, l) +
a

n
(26)

where f(a, l) is the misclassification rate from the training set,
obtained by projecting data into the first a DBB loading vectors.
l is the time lag and n is the average number of training samples
per class.

D. DBB-Based Fault Diagnosis

In summary, the detailed flow chart of obtaining optimal DBB
projection vectors is demonstrated in Fig. 1. Note that this is an
offline training step and thus, the main algorithmic complexity
in the optimization step shall not pose any issue. Once the
projection matrix W is obtained, it can be used to diagnose
the fault in any given test data. Specifically, for a test dataset,
we first stack observations in a similar fashion as (18). Then,
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Fig. 1. Training procedure flow chart.

the obtained loading matrix W is used to project the data to the
latent space, in which the following discriminant function [24]
can be used for fault classification:

gj (x) = − 1
2
(x− xj,mean)

TW

×
(

1
nj − 1

W TSjW

)−1

W T (x− xj,mean)

− 1
2
ln

[
det

(
1

nj − 1
W TSjW

)]
. (27)

For each observation, it is grouped into class j if

gj (x) > gi (x) ∀i �= j. (28)

IV. APPLICATION TO TEP

The TEP is a well-known benchmark in process control and
monitoring, and it simulates the closed-loop operation of an
actual industrial process with high fidelity. The TEP has 52
process variables with 41 controlled variables and 12 manip-
ulated variables except for the agitation speed of the reactor’s
stirrer. The simulation data have one healthy scenario and 21
fault scenarios of different types. The sampling interval is 3 min.
Each simulation scenario includes 480 samples of training data
and 800 samples of testing data. Note that all the simulations
are conducted under Gaussian-distributed disturbance and noise
[24], and thus, all fault classes can meet the necessary assump-
tion on the distribution of the data. More details about the TEP
are given in [13].

A. Experiment 1: IDV3, IDV4, IDV9, IDV11, IDV14

In this experiment, we use IDVs 3, 4, 9, 11, and 14 as the fault
set to verify our method [25]. Details about IDVs 3, 4, 9, 11, and
14 can be found in Table I

It is observed that both IDV 3 and IDV 9 are related to the D
feed temperature and thus, although of different types, they are
difficult to separate. On the other hand, IDV 4, 11, and 14 are all
related to the properties of reactor cooling water. Specifically,
IDV 4 and 11 are faults in the temperature of reactor cooling

TABLE I
DESCRIPTION OF FAULTS SELECTED FOR THE CASE STUDIES

Fig. 2. Projections of the training and testing data for Experiment 1
onto the first two FDA loading vectors. (a) Training data. (b) Testing data.

water, while IDV 14 is regarding the flow rate. In general, it is
expected that the data from these faults may possess significant
overlap due to the reasons above. In this example, we examine
our algorithm by diagnosing these five faults.

To verify our heuristic, we project both training data and test
data from these five faults into the first two FDA directions, as
shown in Fig. 2. Clearly, these fault classes demonstrate a large
overlap. IDV3, IDV9, IDV14 are strongly overlapped, whereas
IDV4 is well-separated from this cluster although it has a slight
overlap with the sparsely scattered IVD11.

To determine the optimal hyperparameters for the DBB-based
fault diagnosis, we grid the time lag l and the reserved order of
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Fig. 3. IC plots for two comparison schemes: (a) DBB-based method
and (b) DFDA-based method.

DR a in the interval [0, 3] and [1, 40], respectively. For each
grid, the conjugate gradient is used to obtain the optimal loading
vectors for DBB approach, upon which the IC can be computed.
A 2-D IC surface is fitted to the computed values of the IC on each
mesh grid, as shown in Fig. 3(a). The optimal hyperparameters
are thus determined as l = 2 and a = 24 from the training
data.

We make two comparisons between DBB-based methods (i.e.,
the methods based on BB and DBB), DFDA-based methods
(i.e., FDA and dynamic FDA), and locality-preserving FDA
(LP-DFDA) [26] in this case study. The motivation to select
(D)FDA and LP-DFDA for comparison is as follows. (D)FDA
is the most classical DR-based method for fault diagnosis and
it adopts a different criterion during DR. The LP-DFDA is
a nonlinear version (considering local nonlinear manifolds in
the data) of FDA. It can almost provide the best performance
reported in the literature for DR-based methods. By comparing
with these methods, we can clearly demonstrate the necessity of
considering DBB criterion during DR. For the first comparison,
all methods use the same hyperparameter values determined
above, i.e., l = 2 and a = 24. For BB and FDA, where
the serial correlations among process variables are neglected,
we simply set a = 24. Apparently in this case, the selected
hyperparameters are not optimal for the DFDA-based and LP-
DFDA methods. Thus, in the second comparison, for DFDA

TABLE II
CLASSIFICATION RESULTS FOR FDA, DFDA, BB, AND

DBB FOR COMPARISON 1

TABLE III
CLASSIFICATION RESULTS FOR DFDA, LP-DFDA, AND

DBB FOR COMPARISON 2

and LP-DFDA methods, we seek their respective optimal hy-
perparameters by plotting the IC surface of DFDA, as shown
in Fig. 3(b) for DFDA. It is found that the optimal values are
l = 0, a = 39 for DFDA and l = 1, a = 7 for LP-DFDA (the
IC surface is omitted). The detailed fault diagnosis results are
listed in Tables II and III, respectively, for these two comparison
schemes.

From Fig. 3(b) one can see a clear downward trend as the order
increases, which indicates that the DBB-based method prefers
less complex models, compared with the DFDA-based method.
The optimal reduction ordera and time lag l for the DFDA-based
method in this case can be determined as l = 0 and a = 39
from training sets. l = 0 indicates that the original data are not
dynamically enhanced for DFDA for this specific set of faults.

Table II describes the performance of four fault diagnosis
methods on the test data: FDA, DFDA, LP-DFDA, BB, and
DBB. With the FDA method, the misclassification rates of IDV3,
IDV4, and IDV9 are as high as 74.38%, 66.13%, and 69.13%,
respectively, i.e., these faults are incorrectly diagnosed most
of the time. In contrast, the BB-based method, although also
neglecting serial correlations, achieves better diagnosis perfor-
mance for all five faults. The overall misclassification rate for the
BB-based method is 29.75%, which is a factor of 1.76 enhanced
discriminability than FDA’s 52.33%. As remarked in the above
sections, the main reasons for the superior performance of the
BB-based method are: 1) the BB-based method minimizes the
Bayes error through minimizing an upper bound, which is a
direct manifestation of the misclassification rate and 2) the
objective function sums up the BB between all pairs of faults
and thus, the separation between these faults is not dominated
by classifying only a few faults.

In addition, the fault diagnosis results of DFDA, LP-DFDA,
and DBB are also included in Table II. By stacking lagged
variables into the data matrix, the dynamic information between
consecutive samples can be fully captured. From Table II, the
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Fig. 4. Surface fitting based on DBB-based method IC data.

LP-DFDA shows 34.60% misclassification rate (better than FDA
and DFDA), whereas the DBB method demonstrates the best
classification performance with only 27.02% misclassification
rate. This is a factor of 1.94, 2.04, 1.28, and 1.10 less than that
of the FDA, DFDA, LP-DFDA, and BB, respectively. Since the
selected hyperparameters may not be optimal for DFDA (and
LP-DFDA), its performance is surprisingly worse than that of
the FDA.

For comparison 2, we update the optimal hyperparameters for
DFDA as l = 0 and a = 39 from Fig. 3(a), and l = 1 and
a = 7 for LP-DFDA. The detailed results are in Table III, where
the overall misclassification rate of DFDA is 40.12%, a much
better performance than that in comparison 1. However, this rate
is still a factor of 1.48 worse than that of DBB. The DBB method
has a factor of 1.44 better than LP-DCVA (38.81%). Again, the
reason comes from the advantage of DBB in directly reducing
Bayes error relative to the DFDA method.

B. Experiment 2: IDV16, IDV17, IDV19, IDV20

In this experiment, we investigate the fault diagnosis of IDV
16, IDV 17, IDV 19, and IDV 20 (see Table I), which are
unknown faults, to further evaluate the performance of the DBB-
based fault diagnosis method. Similar to the previous example,
the first step is to determine the optimal hyperparameter values.
To this end, we plot the IC value at different combinations of the
reduction order a and time lag l for the DBB-based method, as
shown in Fig. 4, together with a fitted 2-D surface. The optimal
hyperparameters in this case are determined as l = 1 and
a = 30 from the training data. As a comparison, for the methods
based on BB and FDA, the optimal orders are chosen as a = 24.
The DFDA-based method selects the best order determined by
IC as l = 1 and a = 24, and the best hyperparameter for the
LP-DFDA is shown to be l = 1 and a = 40.

As shown in Fig. 5, the DR generated by DBB has better
visual performance than FDA, BB, DFDA, and LP-DFDA in
terms of less overlap between the data from IDVs 16, 17, 19,
and 20 on the 2-D reduced space. For each method, the right plot
demonstrates the histogram of normalized pairwiseL2 distances
between all pairs of IDVs in the 2-D space. It is observed that
the distributions of distances between the classes generated by
FDA, DFA, and LP-DFDA are fairly unbalanced, with some
distances being very small while others being large. In contrast,

Fig. 5. Projections of training data using different methods for IDV 16,
17, 19, and 20 onto the first two loading vectors (left) and the histogram
of distances between fault classes (right): (a) FDA; (b) BB; (c) DFDA;
(d) LP-DFDA; and (e) DBB.

the distances between the classes generated by BB and DBB
are more uniform, which implies better separability, and this is
consistent with the scatter plots on the left.

Table IV illustrates the classification results of each method
on the testing data. As shown in Table IV, the overall misclas-
sification rate for DBB is 8.01% for the test data, compared to
12.67% of DFDA and 10.14% of LP-DFDA, which is a factor of
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TABLE IV
CLASSIFICATION RESULTS OF FDA, DFDA, LP-DFDA, BB, AND

DBB FOR THE TEST DATA

1.58 and a factor of 1.27 enhanced diagnostic performance for
DFDA and LP-DFDA, respectively. Specifically, DBB shows
much superior performance than the other methods in almost
all fault classes except for Fault 20 than (D)FDA and BB. Also,
the BB-based method gives lower misclassification rate than
FDA. This observation shows that the (D)BB-based approaches
are consistently better than the (D)FDA-based approaches. In
addition, the DBB method shows improved test performance
than LP-DFDA. In addition, both DFDA and DBB approaches
present improved performance than their respective counterparts
without considering lagged observations in the data. Thus, tak-
ing account of serial correlation is of significance in seizing the
dynamic patterns in the TEP data and practical data where fast
sampling is ubiquitous.

V. CONCLUSION

In this article, we proposed a novel DBB method for fault
diagnosis. The proposed method seeked to minimize the Bayes
error during DR, in contrast to traditional DR such as FDA.
A Bhattacharyya upper bound was formulated as a quantifi-
cation of Bayes errors in distinguishing the faults. To further
grip the serial correlation information due to dynamics of the
process, lagged variables were also incorporated into the data
matrix. For multiple faults, the objective function of DBB was
formulated by summing up the pairwise DBB for all pairs of
fault classes. A novel IC was proposed to account for both the
training performance and model complexity for selecting the
hyperparameters. Finally, the proposed method was examined
by the benchmark TEP. The DBB-based method yielded superior
fault diagnosis performance than FDA, DFDA, LP-DFDA, and
the BB-based approach. Future work includes validating the
proposed algorithm using real applications and also applications
to fault diagnosis of vibration signals [27], [28].
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