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Abstract— Fast charging problem of lithium-ion batteries
with minimum-charging time while limiting battery degra-
dation, has been receiving increasing attention and is
a critical challenge to battery community. Difficulties in
this optimization lie in that: (i) The parameter space of
charging strategies is high dimensional while the budget
of the experimental cost is often limited; (ii) The eval-
uation of charging strategies’ performance is expensive,
and (iii) the degradation process of battery is strongly
nonlinear and multiple degradation mechanisms occur si-
multaneously leading to difficulties for establishing accu-
rate first-principles models. Current methods to address
these difficulties are mainly electrochemical model-based
optimization and grid search, which are rarely adaptive to
battery degradation and/or are of low sample efficiency. In
this work, we propose an adaptive model-based reinforce-
ment learning (RL) approach for fast charging optimization
while limiting battery degradation, in which a probabilistic
surrogate model of differential Gaussian process (GP) is
adopted to adaptively describe the degradation of cells. The
effectiveness of the proposed approach is demonstrated on
PETLION, a high-performance PET-based battery simulator.
The results show that (i) compared with the model-free
RL method, the proposed adaptive GP-based RL approach
possesses superior charging performance and high sample
efficiency, and (ii) the proposed method performs well in the
handling of degradation constraints on voltage and temper-
ature for dynamically aging batteries with its adaptability to
the variations of environment.

Index Terms— Fast charging optimization, Lithium-ion
battery, Reinforcement learning, Machine learning, Gaus-
sian process

I. INTRODUCTION

AS lithium-ion batteries become ubiquitous in clean power
systems, including electric vehicles and smart grids [1],

[2], the fast charging of batteries has gained increasing interest
in the battery community [3], [4]. Fast charging can be
achieved by excessively large currents, but such charging
strategies can cause severe degradation to the battery life [5],
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[6]. Moreover, the relation between charging policy and the
resulting charging performance is unknown and expensive to
evaluate, which poses significant challenges for the optimiza-
tion of battery charging for real-world applications.

The design of fast-charging strategies has been widely
studied in the literature. For instance, Klein et al. [7] adopted
a nonlinear predictive controller to solve the minimum time
charging problem with various constraints on battery states.
Suthar et al. [8] proposed an optimal charging strategy to
minimize mechanical damage to battery particles based on
the capacity fade mechanism. A model predictive control
(MPC) method was proposed in [9] to design a fast charging
profile with inputs, outputs, and constraints taken into account.
Jiang et al. [10] applied a data-driven Bayesian optimiza-
tion approach to solve a constrained minimum-charging time
problem with continuous-varied current charging protocols,
which outperforms conventional CC-CV methods. However,
these aforementioned methods are rarely adaptive to parameter
drifting as battery degrades. To this end, the reinforcement
learning (RL) framework is employed to enable the adaptive
optimization of charging strategies [11]. Specifically, the RL
agent iteratively interacts with the environment (battery) by
deploying an action (charging current), receiving a reward,
and updating the policy (charging strategy) parameters, to
maximize a properly predefined cumulative reward. In this
process, the charging strategy can be adaptively updated in
the presence of environment parameter changes as battery ages
[11].

Tabular methods are a class of typical RL algorithms to
solve policy iteration, e.g., Q-learning, but the convergence
rate of tabular methods is severely deteriorated as the dimen-
sion of state-action space increases, known as the curse of
dimensionality. In addition, tabular methods are not applicable
to continuous state-action space [12]. As a solution to this
problem, approximate dynamics programming is proposed for
continuous state-action space, in which the Q-table in tabular
methods is replaced by a function estimator, e.g., artificial
neural network (ANN) [13]. Using deep neural networks as
function approximators for RL has achieved success in various
fields such as ocean engineering [14], robot navigation [15],
and smart IoT system [16]. Actor-critic algorithm is one of
such methods that perform well in non-Markovian stochastic
processes [17]. In [11], a model-free actor-critic RL frame-
work is proposed for designing fast charging strategy with
safety constraints, in which violations of safety constraints are

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TII.2023.3257299

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on March 21,2023 at 07:29:48 UTC from IEEE Xplore.  Restrictions apply. 



2 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, XXXX

included in the reward function. It is reported that this model-
free RL method shows good adaptability to parameter drifting
of the environment but is low in sample efficiency, requiring
hundreds or thousands of interactions with environment for
policy learning.

In reinforcement learning, two types of efficiency are impor-
tant: sample efficiency and computing efficiency [18]. Model-
free RL methods train the policy without an explicit surrogate
model to represent the environment, which often shows good
computing efficiency but low sample efficiency [11]. Model-
based RL methods learn a surrogate model of the environment
and implement policy iterations simultaneously. They perform
better in sample efficiency due to fewer interactions with the
environment but worse in computing efficiency due to model
optimization and prediction [19], [20]. For scenarios where
the cost of interaction with the environment is expensive, e.g.,
the evaluation of battery charging policy, it is appropriate to
adopt a model-based RL method to achieve higher sample
efficiency. However, the higher sample efficiency achieved
by model-based methods is usually at the cost of larger
asymptotic bias [21]. There is no guarantee of optimal solution
or even convergence of the learning process for model-based
methods when the surrogate model is not accurate enough
to represent the real environment. Therefore, an appropriate
model and training strategy should be designed carefully for
certain application problems to achieve superior performance
in both sample efficiency and asymptotic bias. For instance,
Pong et al. [21] proposed temporal difference models for RL
to provide relatively high sample efficiency on a series of
continuous control tasks. A deep kernel learning approach
[22] was put forward to learn informed kernels to build
Gaussian process (GP) for the model-based RL. In summary,
the following three challenges are present for optimizing the
battery charging policies: (1) This optimization problem is
black-box where the relation between charging strategy and
resultant charging performance is unknown and expensive to
evaluate; (2) Current methods cannot provide a smart optimal
charging policy that is adaptive to battery aging; and (3)
Existing RL methods for optimizing the charging policy are
low in sample efficiency.

In this work, we study the usage of model-based RL to op-
timize fast charging strategies for dynamically aging batteries
with degradation constraints. To reduce battery degradation,
constraints on voltage and temperature are imposed since bat-
tery degradation mechanisms, such as SEI growth [23], [24],
are often related to the operating range of battery temperature,
voltage, and current density [10], [25]. An adaptive model-
based RL framework is developed for the optimization of this
minimum-charging time problem in continuous action-state
space, in which a probabilistic GP is applied to model the
cell environment, and a differential GP is employed to model
the degradation of cells.

The main contributions of this work are as follows:
(i) An adaptive model-based RL approach is proposed to

optimize the minimum-time charging strategies in continu-
ous current space with constraints on battery degradation.
Compared with model-free RL methods, the proposed model-
based charging method possesses superior performance and

high sample efficiency, which can considerably reduce the
experimental cost for fast charging design.

(ii) The proposed approach utilizes a probabilistic surrogate
model based on differential GP to adaptively represent the
dynamic aging of batteries, and shows a superior charging
performance in handling the degradation process.

The rest of this article is organized as follows. The RL
framework is briefly revisited in Section II. The proposed
adaptive model-based RL approach is detailed in Section III,
followed by a formulation of battery charging problem in
Section IV. The effectiveness of the proposed fast charging
approach is demonstrated and discussed in Section V. The
conclusion of this work is summarized in Section VI.

II. REINFORCEMENT LEARNING FUNDAMENTALS

The key elements of reinforcement learning including
Markov decision process (MDP) and actor-critic framework
are briefly reviewed in this section. More detailed information
about MDP can be found in [19], [26], [27].

A. Markov Decision Process

MDP solves the problem of finding the best policy that
maximizes the total cumulative rewards received from the
environment. In MDP, we use a vector st ∈ S to describe
the state of environment at step t ∈ R+, where S stands for
the state space. The action to be taken at step t is denoted
by vector at ∈ A, where A represents the action space.
Basic knowledge of the environment includes state-transition
probability p(st+1|st,at) and instant reward rt+1 = r(st,at).
A policy is a mapping from state to action π : S → A, and
it decides the action to be taken based on the state. The total
discounted cumulative reward is quantitatively defined as

Gt =

+∞∑
k=0

γkrt+1+k, (1)

where γ ∈ [0, 1] is the discounting factor. The expected total
discounted cumulative reward from st onward is regarded as
the MDP’s objective function, which is shown to be

V π(st) = E [Gt|st] , (2)

where V π(st) is the state function, and π is the underlying
policy. The optimal state function is often obtained indirectly
from the state-action function, or Q-function, defined as

Qπ(st,at) = E [Gt|st,at] . (3)

Based on the Bellman equation, it follows that

Qπ(st,at) = r(st,at) + γQπ(st+1,at+1). (4)

The objective of MDP is to find the optimal policy π to
maximize the state-action function or state function, i.e.,

Q∗(st,at) = argmax
π

Qπ(st,at), (5)

V ∗(st) = argmax
at∈A

Q∗(st,at). (6)
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(a) (b)

Fig. 1. Model-based reinforcement learning framework for fast-charging: (a) Static model-based RL with no adaptability, and (b) adaptive GP
model-based RL for a changing environment. The dotted arrows represent the workflow of a model-free RL method and the solid arrows stands
for the workflow of the model-based RL methods. For clarity and simplification, the interaction between actor and critic during calculation of loss
function, backward propagation, and parameter update is omitted in this schematic.

B. Actor-Critic Method

The actor-critic method is effective in handling continuous
state and action spaces. Two neural networks, defined as actor
network π(st|θπ) and critic network Q(st,at|θQ), parameter-
ized respectively by θπ and θQ, are used to represent the actor
and critic. The deep deterministic policy gradient is used to
learn the network parameters.

1) Critic: The critic network is used to estimate the Q-
function based on the policy provided by the actor. The
network parameters are updated according to the follows.
Consider that at step t, the state is st, then an action at
with exploration noise is applied to the environment, which
returns the instant reward rt+1 and next-step state st+1. Then
the loss function for training the critic network is formulated
as minimizing the difference between critic network and
the temporal difference (TD) target obtained with n random
samples from the replay buffer [19], [27]:

L(θQ) =
1

N

N∑
t=1

(yt −Q(st,at|θQ))2, (7)

where yt (t = 1, 2, . . . , N) is the TD target, defined as

yt = rt+1 + γQ(st+1, π(st+1|θπ)|θQ). (8)

The critic network parameters are updated as follows

θQk+1 = θQk − ηQ∇θQL(θQ), (9)

where k stands for the iterates of gradient descent algorithm,
and ηQ is the learning rate of the critic network.

2) Actor: The actor network returns the optimal action
based on current state. The network parameters are updated
to maximize the cumulative expected reward (i.e., policy
gradient) as maximize V equals minimize the loss −V

L(θπ) = −V π(st), (10)

θπk+1 = θπk − ηπ∇θπL(θπ), (11)

where ηπ is the learning rate of the actor network, and the
cumulative expected reward V π(st) is replaced by its estimate
Q(si,ai|θQ) provided by the critic in real implementation.

III. THE PROPOSED ADAPTIVE MODEL-BASED RL FOR
FAST CHARGING OPTIMIZATION

In this section, we demonstrate the detailed methodology to
establish static and adaptive GP models as the surrogate of a
generic RL environment.

A. Probabilistic Surrogate Model Based on GP

As mentioned above, the learning process of a model-
free RL requires numerous interactions with the environment,
which is not appropriate for scenarios where the cost of
interactions with environment is expensive, just as the case of
fast-charging optimization for lithium-ion batteries. To reduce
the evaluation cost, we first build a probabilistic surrogate
model to represent the environment based on the data from
only a few interactions with environment, after which the
training of RL only needs to interact with the model instead
of the environment. This method is termed as model-based RL
since we use a surrogate model to represent the environment.
Compared to model-free RL, the presence of an environment
model can considerably improve the sample efficiency in
training RL.

For typical RL, the input to the environment is the decided
action ai−1 from the RL agent, and the output of the en-
vironment is the next-step state si and reward. Specific to
our study, the RL environment is the battery simulator, the
action is the designed charging currents. A GP is employed
to build the probabilistic surrogate model, where the tuples
xi = (si−1,ai−1) ∈ RD+F and the differences ∆i =
(∆si,∆ti) ∈ RD+1 are used as training inputs and outputs,
respectively. Here, D and F stand for the dimension of state
and action space, respectively, ti is the i-th RL step, and
∆si = si − si−1 represents the difference of state between
the current and previous steps. Specifically, the GP model is
described as

f(x) ∼ GP(m(x), k(x,x′)), (12)

where m(x) is the mean that is often specified to be zero,
and k(x,x′) is the covariance function. A radial-basis function
(RBF) kernel is used in this work, with its hyperparameters
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learned from data via L-BFGS [28]. The learned GP model
then replaces the environment in the actor-critic framework to
predict the state transition information as

µf (∆∗|x∗) = k⊤
∗ K

−1y = k⊤
∗ β, (13)

σ2
f (∆∗|x∗) = k∗∗ − k⊤

∗ K
−1k∗, (14)

where k∗ := k(X,x∗), X = [x1,x2, . . . ,xn], k∗∗ :=
k(x∗,x∗), β := K−1y, y = [∆1,∆2, . . . ,∆n]

⊤, and K is
the Gram matrix with entries Kij = k(xi,xj).

B. Adaptive Surrogate Model Based on Differential GP
for Dynamically Changing Environment

The previous section presents the usage of GP for modeling
a stable environment. However, such static GP cannot well
model a dynamically changing environment (e.g., battery
aging). To this end, in this section, we propose an adaptive
surrogate model based on differential GP to capture the
changes of the environment.

Likewise, the tuples x̃i = (s̃i−1, ãi−1) ∈ RD+F and the
second-order difference ∆′

i = (∆′s̃i,∆
′t̃i) ∈ RD+1 are taken

as inputs and outputs of the adaptive surrogate model based on
differential GP, where (∆′s̃i,∆

′t̃i) = (∆s̃i,∆t̃i)−µf (∆i|x̃i),
where the superscript “′” denotes the second-order differ-
ence and the symbol “̃ ” denotes the dynamically changing
environment, and µf (∆i|x̃i) is the expected state transition
information predicted by GP for the initial environment.
Similarly, the L-BFGS algorithm is performed to estimate the
hyperparameters of the differential GP model. After that, the
adaptive GP model can be used to predict the dynamically
changing environment as

µf ′(∆′
∗|x̃∗) = k̃⊤

∗ K̃
−1ỹ = k̃⊤

∗ β̃, (15)

σ2
f ′(∆′

∗|x̃∗) = k̃∗∗ − k̃⊤
∗ K̃

−1k̃∗, (16)

where k̃∗ := k(X̃, x̃∗), X̃ = [x̃1, x̃2, . . . , x̃n], k̃∗∗ :=
k(x̃∗, x̃∗), β̃ := K̃−1ỹ, ỹ = [∆′

1,∆
′
2, . . . ,∆

′
n]

⊤, and K̃ is
the Gram matrix with entries K̃ij = k(x̃i, x̃j).

Once the differential GP is well trained, we can integrate
the GP model built from the initial environment states with
the differential GP model to adaptively track the changes of
the environment. The predicted state transition by the adaptive
GP model is

µf̃ (∆̃∗|x̃∗) = µf (∆∗|x̃∗) + µf ′(∆′
∗|x̃∗). (17)

In summary, the differential GP is designed to fit the residual
of state transition between initial GP prediction and the actual
state transition of the new environment, thus can capture
the changes in the environment. A detailed workflow of our
algorithm is summarized in the following section.

C. The Proposed Adaptive GP-based RL Approach
Fig. 1 (a) shows the workflow of the proposed static GP-

based RL framework for an unchanging environment. Specif-
ically, the first N interaction data of the agent with the real
battery system are used to train the surrogate model (dotted
lines). After that, the RL interacts only with the surrogate

Algorithm 1 Static GP model-based RL
1: Randomly initialize critic and actor networks;
2: for n = 1 to N do
3: Provide a random initial state s0 of the environment;
4: i← 0;
5: repeat
6: Apply ai = π(si|θπ) + εi to the environment to

transit into the next state si+1 with instant reward
ri+1, where εi stands for exploration noise;

7: Update GP based on L-BFGS algorithm;
8: Update critic and actor based on (9) and (11);
9: i← i+ 1;

10: until Reach the final state of the environment
11: end for
12: repeat
13: Provide a random initial state s0 of GP;
14: i← 0;
15: repeat
16: Apply ai = π(si|θπ) to GP to transit into the next

state si+1 with instant reward ri+1;
17: Update critic and actor based on (9) and (11);
18: i← i+ 1;
19: until Reach the final state of GP
20: until Convergence

model to train the actor-critic networks until convergence.
The detailed implementation of this method is provided in
Algorithm 1.

Fig. 1 (b) illustrates the structure of the proposed adaptive
GP-based RL framework for a dynamically changing environ-
ment. Specifically, before the beginning of a new cycle, we
initialize a new agent with the parameters of the old agent
which has been trained in the first cycle. For a new cycle,
The first N ′ episodes are conducted in a manner where the
agent interacts with the real battery system, to create some
true data for training the differential GP. Once the differential
GP is trained, we will combine it with the static GP that was
previously trained in the first cycle to predict the next-step state
and reward of the new environment. From then on, the RL will
perform with the GP surrogate model for the rest episodes of a
cycle. The pseudo code of the adaptive GP-based RL is given
in Algorithm 2.

IV. FAST CHARGING OPTIMIZATION

In this section, we first introduce a porous electrode theory
(PET)-based battery simulator that will be used to evaluate
the proposed RL-based fast charging methods, followed by
the formulation of the battery fast charging problem.

A. Electrochemical Model

We summarize the key elements of the PET model in this
subsection. More details about the PET model can be found
in [23]–[25], [29]. In a PET model, the diffusion of lithium
ions in each solid particle is described by the Fick’s second
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(a) (b)

(c) (d)

Fig. 2. Performance of the minimum time charging optimization using the proposed GP model-based RL approach and the model-free RL method
at Tamb = 25◦C, where the shaded region stands for the range between the maximum and minimum values of a variable, and the line stands for
the mean value: (a) cumulative return, (b) charge time, (c) voltage violation, and (d) temperature violation. The sample size used for training in each
episode is represented by the number of state transitions of the simulator referring to the right axis.

(a) (b)

(c) (d)

Fig. 3. The optimal charging profiles provided by the model-free RL and the GP model-based RL at Tamb = 25◦C: (a) current, (b) SOC, (c)
voltage, and (d) temperature.

law with diffusion coefficients Ds
eff,

∂

∂t
cs(z, t) =

1

z2
∂

∂z

[
z2Ds

eff
∂

∂z
cs(z, t)

]
, (18)

with boundary conditions

∂

∂z
cs(z, t)

∣∣∣∣
z=0

= 0,
∂

∂z
cs(z, t)

∣∣∣∣
z=Rs

= −j(z, t)

Ds
eff

, (19)

where z stands for the one-dimension spatial variable, t is
time, cs(z, t) represents the concentration of solid particles,
Rs is the radius of solid particles, and j(z, t) is the ionic flux.

We define the state of charge (SOC) of the anode as

SOC(t) :=
1

Lnc
max,n
s

∫ Ln

0

cs(z, t)dz, (20)

where cmax,n
s is the maximum of cs(z, t) in the anode and Ln
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Algorithm 2 Adaptive GP model-based RL
1: Apply static GP-based RL on an initial environment to

obtain initial GP (G0) and initial actor-critic networks
(whose parameters are θπ0 and θQ0 , respectively);

2: for n = 1 to Ncycles do
3: Initialize a new agent with parameters as θπn = θπ0 and

θQn = θQ0 ;
4: for j = 1 to N ′ do
5: Simulate a complete process, update θπn and θQn as in

steps 6, 8, and 9 in Algorithm 1;
6: Calculate second order difference to update differen-

tial GP (G′
n);

7: end for
8: Integrate G0 and G′

n to form a GP model (Gn) for the
new environment;

9: repeat
10: Gn-based training as in steps 16-18 in Algorithm 1;
11: until Convergence
12: end for

is the thickness. The voltage can be calculated as

V (t) = Φs(0, t)− Φs(L, t), (21)

where z = 0 and z = L correspond to the current collector at
the cathode and anode sides, and Φs(z, t) is the solid overpo-
tential at location z and time t. The temperature dynamics is
modeled as

ρCp
∂

∂z
T (z, t) =

∂

∂z

[
λ
∂

∂z
T (z, t)

]
+Qohm(z, t)

+Qrxn(z, t) +Qrev(z, t),

(22)

where ρ is the material density, Cp is the specific heat, λ is the
thermal conductivity, and the terms Qrev, Qrxn, and Qohm stand
for reversible, reaction, and ohmic heat sources, respectively
[29]. Our study will be based on PETLION [30], an open-
source, high-performance implementation of the PET model
in Julia, as the battery simulator.

B. Minimum Time Battery Charging Problem for RL
Our objective is to minimize the charging time for batteries

without violating operating constraints. The problem of mini-
mizing charging time based on RL formulates as

max
I(t)

−tf (23)

s.t. battery dynamics in (20)-(25),

Imin ≤ I(t) ≤ Imax,

T (t) ≤ Tmax, V (t) ≤ Vmax,

T (t0) = T0, V (t0) = V0,
SOC(t0) = SOC0, SOC(tf ) = SOCref,

where t0 and tf are the initial time and final time of the
charging process; T0, V0, and SOC0 are the initial values of
the temperature, voltage, and SOC, respectively. SOCref is
the reference of SOC at which the charging is considered
finished, Tmax and Vmax is the upper bounds for battery

temperature and voltage, respectively. Note that in (23), to
reduce the SEI formation, we explicitly include constraints of
voltage and battery since their values are directly accessible
in practice and also they are tightly related to the SEI.
Although other variables such as voltage overpotential is an
even better reflection of SEI, their values are not measurable
in practice and thus it is not convenient to include them in
the optimization (23) or the proposed RL framework. Here,
we treat the dynamics (20)-(25) as a black-box. The details
of solving (23) while maintaining the constraints using RL
algorithms are elaborated in the next section.

V. RESULTS AND DISCUSSION

A. Model-Based RL for Constrained Charging Policy
In this section, our objective is to assess the proposed

model-based RL charging approach in the context of a dynami-
cally changing environment (i.e., aging battery), in comparison
with the model-free RL charging method [27]. Our goal is
to optimize the charging policy that charges the battery from
20% state of charge (SOC) to 80% SOC in minimal time,
while keeping the temperature and voltage within operational
constraints.

The upper limits of temperature and voltage are Tmax =
309K and Vmax = 4.2V, the ambient temperature is Tamb =
298.15K, and the charging currents are set within the range
[0.05C, 4C]. The reason we set such temperature and voltage
limits is because cell degrades faster at higher temperatures
(e.g., ¿ 40oC) and voltages (e.g., ¿ 4.1V) by causing acceler-
ated consumption of lithium inventory and building of internal
resistance [31]. Moreover, setting such limits can ensure that
traditional single-phase porous electrode theory [32] is valid
for Li-plating-based degradation in designing fast-charging
protocols [32]. For the RL framework, the discounting factor is
γ = 0.99, the learning rates of the critic and actor networks are
ηQ = 0.0001 and ηπ = 0.001, respectively, and the sampling
time is T = 30s. V0 is assumed to be a uniformly distributed
random variable ranging from 3.2V to 3.8V, and T0 is similarly
a uniformly distributed random variable ranging from 18◦C to
32◦C.

In each episode, we simulate a charging process with the
environment (battery) state defined as si = (SOCi, Vi, Ti),
actions defined as ai = Ii, where the subscript i denotes the
i-th RL step in this episode, and instant reward defined as:

ri+1 = rSOC
i+1 + rti+1 + rVi+1 + rTi+1, (24)

where

rSOC
i+1 = 10× (SOCi+1 − SOCi),

rti+1 = −0.01× (ti+1 − ti),

rVi+1 =

{
−2× (Vi+1 − Vmax), Vi+1 > Vmax

0, Vi+1 ≤ Vmax

rTi+1 =

{
−(Ti+1 − Tmax), Ti+1 > Tmax

0. Ti+1 ≤ Tmax

The reward function is designed to encourage the battery to
be charged to 80% SOC as fast as possible, while keeping the
temperature and voltage within the operational constraints.
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(a) (b)

(c) (d)

Fig. 4. Charging performance for an aging battery using the proposed adaptive model-based RL and the static model-based approaches at
Tamb = 25◦C: (a) cumulative return, (b) charge time, (c) voltage violation, and (d) temperature violation. Static policy is the optimal policy learned
from the first charging cycle whose parameters are fixed as battery degrades, and parameter drift means the drifting of SEI resistance representing
battery aging. The shaded region stands for the range between the maximum and minimum values of a variable, and the line stands for its mean
value.

(a) (b)

(c) (d)

Fig. 5. Charging performance for an aging battery using the proposed adaptive model-based RL and the static model-based RL methods for the
case of ambient temperature changed from Tamb = 25◦C to Tamb = 30◦C: (a) cumulative return, (b) charge time, (c) voltage violation, and (d)
temperature violation. Static policy is the optimal policy learned from the scenario of ambient temperature at Tamb = 25◦C and its parameters
is fixed as ambient temperature changes, and parameter drift means the drifting of SEI resistance representing battery aging. The shaded region
stands for the range between the maximum and minimum values of a variable, and the line stands for its mean value.

As mentioned in Section III, in the proposed model-based
RL approach, the first 50 episodes are used to learn the
parameters of the actor-critic network using the model-free
manner, during which the inputs X = [x1,x2, . . . ,xn] and the

outputs y = [∆1,∆2, . . . ,∆n] of state transition are stored. A
surrogate model of GP is then modeled for the environment, so
that the actor-critic networks can continuously interact with the
GP model instead of the environment for learning the optimal
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charging protocols.
For our case study, the state of environment is described

as a three-dimensional state vector with three entries: state-
of-charge, voltage and temperature. The action is described
as a scalar of the charging current to apply in the following
period of sampling time. The actor network is a multi-layer
perceptron (MLP) with two hidden layers. Each hidden layer
contains 20 nodes. The activation function is selected as ReLU.
The input to the actor network is the state of environment (3
dimensions), and the output is the generated action by the
actor to be applied to the environment (1 dimension). The
critic network is also an MLP with two hidden layers with
100 nodes in the first layer and 75 nodes in the second layer,
with ReLU as the activation function. The input to the critic
network is the concatenation of state vector and action scalar
(4 dimensions in total). Then the critic network returns the
Q-value as an assessment of the previously deployed action
(1 dimension).

The learning processes of the model-based RL charging
method and the model-free RL method are shown in Fig. 2.
The results show that both the RL learners possesse similar
performance for the minimum-time charging problem, and
both methods converge to similar optimal charging solutions
within 300 episodes. However, the proposed model-based RL
interacts with the real battery system only in first 50 episodes.
Afterwards it interacts with the trained GP model instead
during the subsequent training process. It means that the
proposed model-based RL has a factor of 6 less expensive
than the model-free method in terms of experimental cost for
the fast charging design.

Fig. 2 (c)-(d) show the degree that voltage and temperature
violate their respective constraints during learning, in which
the violation score is computed as max0≤t≤tf Vt − Vmax and
max0≤t≤tf Tt−Tmax, respectively for each episode. Negative
values indicate that the constraints are satisfied and positive
ones indicate constraint violation. The constraint violation
scores approach the boundary (i.e., zero) as the episodes
increase, indicating that the RL approach learns not only
the voltage and temperature constraints but also the optimal
solution of charging policy (since the optimal solution is
located around constraint boundaries). From Fig. 2b, it is
observed that the minimum-charging time optimized by the
RL methods is about 12.5 minutes. The corresponding optimal
charging profile for applied current, SOC, cell voltage as well
as cell temperature is displayed in Fig. 3.

B. Learning Adaptive Constrained Charging Policy for
Dynamically Aging Battery

This section investigates the adaptability of the proposed
adaptive model-based RL charging approach as battery de-
grades. Here the aging process of battery is represented by
linearly increasing the value of SEI resistance as battery
cycling (increase rate = 0.002Ω ·m2/cycle).

In terms of the adaptive model-based RL approach, we
update the parameters of actor-critic based on interactions
with the simulation environment for the first 30 episodes, and
simultaneously train the differential GP as stated in Section

III.B. After that, we combine the differential GP model and the
GP model learned from the data of first cycle for predicting the
state transition according to (19). The parameters of actor and
critic networks are then updated based on the interaction with
the GP models instead of the environment in the remaining
270 episodes. The same architecture of the actor and critic
networks from the previous case study is used here.

The learning results of the static and adaptive model-based
RL for each cycle at Tamb = 25◦C are shown in Fig. 4. As
shown in Fig. 4 (b)-(c), the charging time and voltage violation
of both static and adaptive policy increases as the battery
degrades, which is a consequence of the increase in the SEI
resistance. As shown in Fig. 4 (a), the rewards of both static
and adaptive policy decrease as the degradation of battery, but
the reasons for their drops are different. From Fig. 4 (b)-(d),
the increase rate of charging time of static policy is relatively
slow, and the static policy fails quickly as its voltage violation
exceeds 0 after just 30 cycles. Therefore, the decrease of
static reward is mainly from the violation of voltage constraint.
The charging time of adaptive policy increases more rapidly
than the static policy, but there’s little constraint violations on
both voltage and temperature as the degradation of battery.
In short, the adaptive RL charging approach exhibits a better
performance in handling the degradation constraints than the
static RL method in the dynamically changing environment.
One observation in Fig. 4 (d) is that the temperature constraint
is satisfied with a large margin after 60 cycles, indicating a
conservative policy. That is because for a battery, the voltage
and temperature are inter-related with complex electrochem-
ical relations. Thus, meeting the temperature constraint with
a large margin as in Figure 4. (d) may be a prerequisite for
ensuring the satisfaction of voltage constraints. In other words,
if the temperature were kept close to the boundary after 60
cycles, the voltage would exceed the limit.

The ambient temperature Tamb is also altered to further eval-
uate the performance of the adaptive RL charging approach.
The learning results of the static and adaptive model-based RL
for each cycle at Tamb = 30◦C are displayed in Fig. 5. Fig.
5 shows that the charging time and voltage violation of both
static and adaptive policy increases as the aging of battery,
which is similar to Fig. 4. The reward of adaptive policy is
higher than that of static policy, as shown in Fig. 5 (a). From
Fig. 5 (b)-(d), although the charging time of the static policy
is shorter, its temperature violation is significantly larger than
that of adaptive policy, which causes more severe degradation
to batteries.

It is worth mentioning that a difference between Fig. 4 and
Fig. 5 is in the temperature violation. Fig. 5 shows that the
charging policy provided by the static model-based RL violates
the temperature constraints (temperature violation score is
about 1◦C) throughout the whole process as battery degrades,
which is mainly because the static policy is not adaptive to
the change of ambient temperature. In contrast, the charging
policy optimized by the adaptive model-based RL can maintain
the constraint of temperature (its temperature violation score
is around the boundary of 0◦C), as the ambient temperature
changes from 25◦C to 30◦C. Fig. 5 and Fig. 4 show that the
adaptive RL approach performs well in the handling of both
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voltage and temperature constraints for the scenario of change
on ambient temperature. As a compensation, the charging time
of the adaptive policy increases (see Fig. 4 (b) and Fig. 5 (b)).

In summary, the charging policy optimized by static RL
method would easily violate constraints as battery degrades.
On the contrary, the proposed adaptive model-based RL charg-
ing approach can effectively prevent such violations and obtain
superior performance of fast charging optimization for the
changes in the battery environment.

VI. CONCLUSION

In this article, an adaptive model-based deep RL approach
is proposed for the optimization of minimum-charging time
policies for dynamically aging batteries with constraints on
voltage and temperature for limiting battery degradation. The
proposed approach is verified on a PET model-based battery
simulator. The results show that a model-based RL is superior
to a model-free one in terms of sample efficiency. Both meth-
ods converge to similar optimal solutions without degradation
constraint violation in first 300 episodes of a single charging
cycle, while interaction episodes are 300 for model-free RL
method and 50 for model-based RL method, which means that
the proposed approach can largely reduce the experimental
cost of fast charging design. In addition, the adaptive model-
based RL shows superior performance in handling the degra-
dation constraints of voltage and temperature with high sample
efficiency for the scenario of dynamically aging batteries. In
terms of future work, the proposed RL strategy can be applied
to include the optimization of battery design parameters such
as the next-generation solid-state electrolyte chemistries to
advance the development of high-performance batteries.
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