YT30AMII 总线式交流伺服驱动器

用户手册

序言

感谢您惠购南京远图自动化技术有限公司生产的YT 系列总线式伺服驱动器。YT 系列伺服驱动器是南京远图自动化技术有限公司研制、开发生产的高品质、多功能、低噪音的交流伺服驱动器。YT 系列伺服驱动器可对伺服电机的位置、转速、加速度和输出转矩方便地进行控制,YT 系列伺服驱动器的研制成功为传动控制领域带来了无限生机。

YT 系列伺服驱动器核心采用 32 位 C P U,实现对电机全数字控制,是机械制造业最具竞争力的电气传动产品。

YT 系列通用伺服驱动器,是根据自动化领域,针对位置、速度、力矩控制要求而开发,是数控机床、纺织、塑机、造纸及各种自动化流水线等运动控制领域的首选产品。

在使用 YT 系列伺服驱动器之前,请您仔细阅读该手册,以保证正确使用。错误使用可能造成驱动器运行不正常、发生故障 或降低使用寿命,乃至发生人身伤害事故。因此使用前应反复阅 读本说明书,严格按说明使用。本手册为随机发送的附件,务必 请您使用后妥善保管,以备今后对驱动器进行检修和维护时使用。

目录

第 1 章 产品检查与安装	1
1.1 产品检查	1
1.2 安装与接线	1
1.3 安装方法	2
第2章接线	4
2.1 配线规格	4
2.2 配线方法	4
2.3 注意事项	5
2.4 标准连接	6
第3章接口	7
3.1 伺服驱动器电源端子	7
3.2 编码器信号与 IO 端子CN2	8
3.3 MII 通信接口端子 CN3/CN4	
第4章参数	11
4.1 参数一览表	
4.2 参数详解	14
第5章保护功能	20
5.1 报警一览表	20
5.2 报警处理方法	
第6章显示与键盘操作	27
6.1 第1 层	27
6.2 第2 层	
6.2.1 监视方式	28
6.2.2 参数设置	29
6.2.3 参数管理	30
6.2.4 速度试运行	31
6.2.5 JOG 运行	32
6.2.6 自动增益调整	. 32
6.2.7 清除绝对值编码器报警	33
第 7 章 规格	34
7. 1 伺服驱动器规格	34
7. 2 伺服代码参数与电机对照表	35
附录 常用操作指导	39
一 修改伺服驱动器型号与伺服电机型号	
二 驱动器强制使能设置	

第 1章 产品检查与安装

1.1 产品检查

本产品在出厂前均做过完整功能测试,为防止产品运送过程中因疏忽 导致产品不正常,拆封后请详细检查下列事项:

- 检查伺服驱动器与伺服电机型号是否与订购的机型相同。
- 检查伺服驱动器与伺服电机外观有无损坏及刮伤现象。运送中造成损 伤时,请勿接线通电。
- 检查伺服驱动器与伺服电机有无零组件松脱之现象。是否有松脱的螺 丝,是否螺丝未锁紧或脱落。
- 检查伺服电机转子轴是否能以手动旋转。带制动器的电机无法直接旋 转。

如果上述各项有发生故障或不正常的现象,请立即与经销商联系。

1.2 安装与接线

- 电气控制柜内的安装
 - 电气控制柜内部电气设备的发热以及控制柜内的散热条件,伺服驱动器 周围的温度将会不断升高,所以在考虑驱动器的冷却以及控制柜内的配 置情况,长期安全工作温度在 40°C 以下。
- 伺服驱动器附近有发热设备 伺服驱动器在高温条件下工作,会使其寿命明显缩短,并会产生故障。 所以应保证伺服驱动器在热对流和热辐射的条件下周围温度在 40°C 以 下

- 伺服驱动器附近有振动设备 采用各种防振措施,保证伺服驱动器不受振动影响,振动保证在 0.5G (4.9m/s²)以下。
- 伺服驱动器在恶劣环境使用 伺服驱动器在恶劣环境使用时,接触腐蚀性气体、潮湿、金属粉尘、 水以及加工液体,会使驱动器发生故障。所以在安装时,必须保证驱 动器的工作环境。
- 伺服驱动器附近有干扰设备 伺服驱动器附近有干扰设备时,对伺服驱动器的电源线以及控制线有很 大的干扰影响,使驱动器产生误动作。可以加入噪声滤波器以及其它各种 抗干扰措施,保证驱动器的正常工作。注意加入噪声滤波器后,漏电流会 增大,为了避免这个毛病,可以使用隔离变压器。特别注意驱动器的控 制信号线很容易受到干扰,要有合理的走线和屏蔽措施。

1.3 安装方法

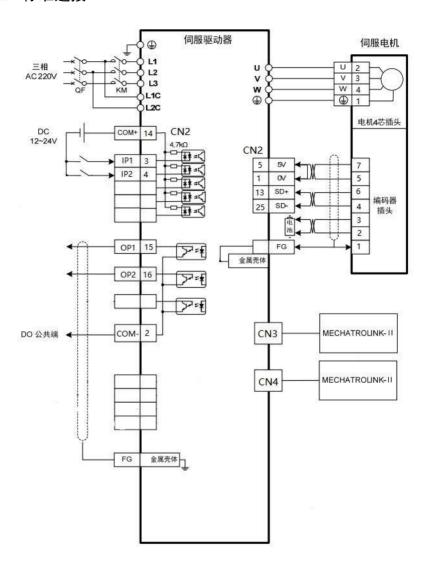
- 安装方向 伺服驱动器的正常安装方向是垂直直立方向。
- 安装固定 安装时, 拧紧伺服驱动器后部的 2 个 M5 固定螺丝。
- 安装间隔 为了保证驱动器的使用性能和寿命,请尽可能地留有充分的安装间 隔。
- 散热 伺服驱动器采用自然冷却方式,在电气控制柜内必须安装散热风扇, 保证有垂直方向的风对伺服驱动器的散热器散热。

- 安装注意事项
 安装电气控制柜时,防止粉尘或铁屑进入伺服驱动器内部。
- 无腐蚀性、引火性气体、油气、切削液、切削粉、铁粉等环境。
- 无水汽及阳光直接照射的场所。
- 水平安装:为避免水、油等液体自电机出线端流入电机内部,请将电缆出口置于下方。
- 垂直安装:若电机轴朝上安装且附有减速机时,须注意并防止减速机 的油渍经由电机轴渗入电机内部。
- 电机轴的伸出量需充分,若伸出量不足时将容易使电机运动时产生振动。
- 安装及拆卸电机时,请勿用榔头敲击电机,否则容易造成电机轴及编码器损坏。

第2章接线

2.1 配线规格

- 线径: PE、R、S、T、U、V、W 端子线径≥1.5mm² (AWG14-16), r、t 端子线径>0.75 mm² (AWG18)。
- 端子采用预绝缘冷压端子, 条必连接牢固。
- 建议采用三相隔离变压器供电。


2.2 配线方法

- 输入输出信号线与编码器信号线,请使用推荐的电缆或相似的屏蔽 线,配线长度为:
 - 输入输出信号线 3m 以下,编码器信号线 20m 以下。接线时按最短距离连接,越短越好,主电路接线与信号线要分离。
- 接地线要粗壮,作成一点接地,伺服电机的接地端子与伺服驱动器的接地端子 PE 务必相连。
- 为防止干扰引起误动作,建议安装噪声滤波器,并注意:
 - 1) 噪声滤波器、伺服驱动器和上位控制器尽量近距离安装。
 - 2) 继电器、电磁接触器、制动器等线圈中务必安装浪涌抑制器。
 - 3) 主电路和信号线不要在同一管道中通过及不要扎在一起。
- 在附近用强烈干扰源时(如电焊机、电火花机床等),输入电源上使 用隔离变压器可以防止干扰引起误动作。
- 请安装非熔断型断路器(NFB)使驱动器故障时能及时切断外部电源。
- 正确连接电缆屏蔽层。

2.3 注意事项

- 驱动器 U、V、W 的接线端子必须与电机端子 U、V、W ——对应,注意不能用调换三相端子的方法来使电机反转,这一点与异步电动机完全不同。
- 由于伺服电机流过高频开关电流,因此漏电流相对较大,电机接地端子必须与伺服驱动器接地端子 PE 连接一起并良好接地。
- 因为伺服驱动器内部有大容量的电解电容,所以即使切断了电源,内部电路中仍有高压电。在电源被切断后,最少等待 5 分钟以上,才能接触驱动器和电机。
- 接通电源后,操作者应与驱动器和电机保持一定的距离。
- 长时间不使用,请将电源切断

2.4 标准连接

第3章接口

3.1 YT30A-MII 系列伺服驱动器电源端子

端子记号	信号名称	功能
PE	系统接地	接地端子
R		主回路电源输入端子
S	主回路电源输入	AC220V 50Hz
Т	三相AC220V	注意:不要同电机输出端子U、V、W 连接
U		输出到伺服电机的电源,
V	伺服电机电源输 出	必须与电机 U、V、W 端子一一对应连
W	Щ	接
P	制动电阻端子	外接制动电阻时,请将外接电阻连接到
В	indext, Clarvin 1	P和 B端子。
L1C	控制电源输入单	控制回路电源输入端子
L2C	相AC220V	AC220V 50Hz

表 3.1 电源端子

注意: 驱动器的外置制动电阻,推荐阻值为 $15\Omega{\sim}30\Omega$, 功率为 $300W{\sim}500W$ 。

3.2 编码器信号与 IO 端子 CN2

端子号	信号名称	功能		
- 新丁 丁	16亏负称	记号		描述
CN2-05 CN2-06	5V 电源	+5V		伺服电机光电编码器用 +5V 电源和公共地;电缆
CN2-01 CN2-17	电源公共地	0V		长度较长时,应使用多根 芯线并联,减小线路压降。
CN2-13	绝对值编	MA+		绝对值编码器反馈信号
CN2-25	码器信号	MA-		绝对阻拥阿奋及 原信与
CN2-14	输入端子 电源正极	COM+		IP1/IP2 通用输入端子的 电源正极,用来驱动输 入端 子 的 光 电 耦合 器, DC12-24V,电流≥100mA
CN2-02	输出端子 电源负极	СОМ-		OP1/OP2 通用输出端子的 电源负极
CN2-03	通用输入端子 1	IP1		通用输入端子,可根据需要,灵活地映射为不同的
CN2-04	通用输入端子 2	IP2		逻辑信号
CN2-15	通用输出端子 1	OP1		通用输出端子,可根据需要,是活地映射为不同的
CN2-16	通用输出端子 2	OP2		要,灵活地映射为不同的逻辑信号

表 3.2 CN2端子

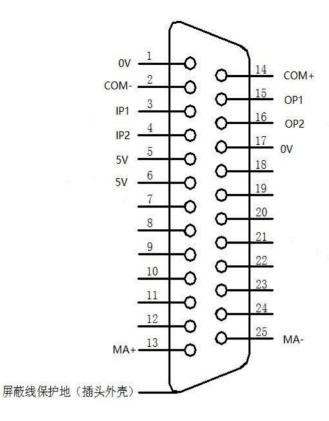


图 3.2 CN2端子

3.3 MII 通信接口端子 CN3/CN4

端子号	信号名称	功能		
<u> </u>	间节角砂	记号	1/0	描述
CN3-3 CN4-3	MII 信号 正端	SRD+		用于实现MII 总线通信, 使用时需要用专用的通信
CN3-2 CN4-2	MII 信号 负端	SRD-		线缆连接其他设备

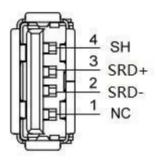


图3.1 MII 通信接口

第4章参数

4.1 参数一览表

序号	名称	适用 方式	参数范围	出厂值	单位
0	密码	P/S	0~9999	315	
1	电机型号	P/S	1~1000	26	
2	电机编码器型号(只读)	P/S			
4	软件版本(只读)	P/S			
5	初始显示状态	P/S	0~31	0	
6	控制方式选择	P/S	0~9	9	
7	速度比例增益	P/S	10~3000	175*	Hz
8	速度积分时间常数	P/S	1~3000	100*	ms
9	扭矩滤波系数	P/S	10~3100	800*	
10	速度检测滤波系数	P/S	10~3100	800*	
11	位置比例增益	P	5~1000	40	Hz
12	位置前馈增益	P	0~100	0	%
13	位置前馈滤波器截至频率	P	10~3000	2000	Hz
14	位置指令脉冲分频分子	P	1~32767	1*	
15	位置指令脉冲分频分母	P	1~32767	1*	
18	定位完成范围	P	0~30000	20	脉冲

19	位置超差检测范围	P	0~30000	400	×100 脉冲
20	位置超差错误无效	P	0~1	1	22.11
22	驱动禁止输入无效	P/S	0~1	0	
23	JOG 运行速度	S	0~12000	120	rpm
25	最高速度限制	P/S	1~30000	2500*	rpm
26	内部速度 1	S	-12000~12000	0	rpm
27	内部速度 2	S	-30000~30000	-100	rpm
28	内部速度 3	S	-30000~30000	1000	rpm
29	速度到达范围	S	0~100	10	%
34	内部 CCW 转矩限制	P/S	0~300	300	%
35	内部 CW 转矩限制	P/S	-300~0	-300	%
38	手动模式/JOG 模式运行转矩 限制	S	0~300	100	%
39	自动增益调整行程限制	P/S	1~50	10	圏数
40	加速时间常数	S	0~10000	50*	ms
41	减速时间常数	S	0~10000	100*	ms
47	电机停止时机械制动器动作 设定	P/S	0~30000	30	ms
48	电机运转时机械制动器动作 设定	P/S	0~30000	100	ms
49	电机运转时机械制动器动作 速度	P/S	0~3000	30	rpm
59	零速信号输出范围	S	0~100	5	rpm
82	内部使能	P/S	0~1	0	

序号	名称	适用 方式	参数范围	出厂值	单位
85	多摩川绝对值编码器电池报 警开关	P/S	0~1	1	
86	IPM 过热报警开关	P/S	0~1	1	
96	自动识别电机型号使能	P/S	0~1	1	
97	数字量输入 1 信号指定	P/S	0~3	0	
98	数字量输入 2 信号指定	P/S	0~3	1	
99	数字量输出 1 信号指定	P/S	0~5	0	
100	数字量输出 2 信号指定	P/S	0~5	1	

4.2 参数详解

表 4.2 用户参数内容详解

序号	名称	功能	参数范围
0	密码	 用于防止参数被误修改。一般情况下,需要设置参数时,先将本参数设置为所需密码,然后设置参数。调试完后,最后再将本参数设置为 0,确保以后参数不会被误修改。 密码分级别,对应用户参数、系统参数和全部参数。 修改型号代码参数(PA1和 PA2)必须使用型号代码密码,其他密码不能修改该参数。 用户密码为 315。 型号代码密码为 385。 	0~9999
1	电机型号	● 对应同一系列不同功率级别的驱动器和电机。 ● 不同的型号代码对应的参数缺省值不同,在使用恢复缺省参数功能时,必须保证本参数的正确性。 ● 当出现 EEPROM 报警 (编号 20), 经修复后,必须重新设置本参数,然后再恢复缺省参数。否则导致驱动器不正常或损坏。 ● 修改本参数时,先将密码 PAO 设置为385, 才能修改本参数。参数的详细意义见 8.4 章节。 ● 恢复出厂缺省参数的操作参见 7.13.1 章节。	1~1000
2	电机编码器 型号(只读)	显示电机编码器的类型: ■ 0 - 增量式编码器 2 - 多摩川 17 位/24 位多圈绝对值编码器	
4	软件版本(只 读)	可以查看软件版本号,但不能修改。	

		-	
5	初始显示	选择驱动器通电后显示器的显示状态。 0: 显示电机转速; 1: 显示当前位置低 5 位; 2: 显示当前位置高 5 位; 3: 显示位置指令(指令脉冲积累量)低 5 位; 4: 显示位置偏差(指令脉冲积累量)高 5 位; 5: 显示位置偏差低 5 位; 6: 显示位置偏差低 5 位; 7: 显示电机转矩; 8: 显示电机电流; 9: 保留; 10: 显示速度指令; 11: 显示转矩指令; 12: 显示数字量输入; 13: 显示数字量输出; 14: 显示运行状态; 15: 显示驱动器报警; 16: 保留; 17: 保留; 18: 保留; 19: 显示电机增量编码器 ABZUVW 状态; 20: 显示电机编码器单圈位置低 5 位; 21: 显示电机编码器单圈位置低 5 位; 22: 显示电机编码器多圈位置低 5 位; 23: 保留; 24: 保留; 25: 保留; 26: 保留; 27: 保留; 28: 显示 CPU 版本号; 29: 保留; 30: 显示识别到的电机型号代码;	0~31
		31:显示识别到的编码器型号代码。	
6	控制方式选择	通过此参数可设置驱动器的控制方式。 4:自动增益调整方式,在 AU菜单下操作; 5: 手动方式,在Sr 菜单下操作,用UP/DOWN按键进行加速/减速操作; 6: 点动方式,在 Jr菜单下操作,以参数设定的点动速度,用 UP/DOWN按键进行正/反向运行; 9: MII 通信模式; 其他值:保留。	0~9

7	速度比例增益	 设置速度环调节器的比例增益。 设置值越大,增益越高,刚度越大。参数数值根据具体的伺服驱动系统型号和负载情况确定。一般情况下,负载惯量越大,设定值越大。 在系统不产生振荡的条件下,尽量设定的较大。 	10~3000
8	速度积分时间常数	设定速度环调节器的积分时间常数。设置值越小,积分速度越快,系统抵抗偏差越强,即刚度越大,但太小容易产生超调。	1~3000
9	扭矩滤波系 数	用来限制扭矩指令频带,避免电流冲击和 震荡,使电流响应平稳,在没有震荡时, 尽量增大设定值。	10~3100
10	速度检测滤波系数	速度检测滤波系数数值越大,速度响应越快,设置值过大可能导致电机发出较大的电流噪声;设置值越小,速度相应越慢,设置值过小可能导致速度波动增大甚至振荡。	10~3100
11	位置比例增益	 ● 设定位置环调节器的比例增益。 ● 设置值越大,增益越高,刚度越大,相同频率指令脉冲条件下,位置滞后量越小。但数值太大可能会引起振荡或超调。 ● 参数数值根据具体的伺服驱动系统型号和负载情况确定。 	5~1000
12	位置前馈增益	 设定位置环的前馈增益。 设定为 100%时,表示在任何频率的指令脉冲下,位置滞后量总是为 0。 位置环的前馈增益增大,控制系统的高速响应特性提高,但会使系统的位置环不稳定,容易产生振荡。 	0~100
13	位置前馈滤 波器截止频 率	● 设定位置环前馈量的低通滤波器截止频率。● 本滤波器的作用是增加复合位置控制的稳定性。	10~3000
14	位置指令脉 冲分频分子	 设置位置指令脉冲的倍频和分频(电子齿轮)。 在位置控制方式下,通过对 PA14、PA15参数的设置,可以很方便地与各种脉冲源相匹配,以达到用户理想的控制分辨 	1~32767

		率(即角度/脉冲)。	
15	位置指令脉 冲分频分母	见参数PA14。	1~32767
18	定位完成范围	● 设定位置控制下定位完成脉冲范围。 ■ 本参数提供了位置控制方式下驱动器判断是否完成定位的依据。当位置偏差计数器内的剩余脉冲数小于或等于本参数设定值时,驱动器认为定位已完成,定位完成信号 PSR ON, 否则 PSR OFF。	0~30000
19	位置超差检测范围	● 设置位置超差报警检测范围。 ● 在位置控制方式下,当位置偏差计数器的 计数值超过本参数值时,伺服驱动器给出 位置超差报警。	0~30000
20	位置超差错误无效	0: 位置超差报警检测有效; 1: 位置超差报警检测无效,停止检测位置超差错误	0~1
22	驱动禁止输入无效	0: FSTP 为 OFF 时,禁止伺服电机向 CCW 方向旋转; RSTP 为 OFF 时,禁止伺服电机向 CW 方向旋转; FSTP/RSTP 同时为 OFF 时,驱动器出现 7 号报警。 1: 驱动禁止功能无效,电机的旋转不受 FSTP 和RSTP 限制。	0~1
23	JOG 运行速 度	设置 JOG 操作的运行速度。	0~12000
25	最高速度限制	● 设置伺服电机的最高速度。● 与旋转方向无关。● 如果设置值超过额定转速,则实际最高限速为额定转速。	1~30000
26	内部速度 1	● 设置内部速度 1。● 速度控制方式下,当 SC1 OFF, SC2 OFF 时,选择内部速度 1 作为速度指令。	-12000~12000
27	内部速度 2	设置内部速度 2。速度控制方式下,当 SC1 ON, SC2 OFF 时,选择内部速度 2 作为速度指令。	-30000~30000
28	内部速度 3	● 设置内部速度 3。 ■ 速度控制方式下,当SC1OFF,SC2ON时,选择内部速度 3 作为速度指令。	-30000~30000

29	速度到达范 围	速度方式下,当实际速度到达[指令速度 ×(100-PA29)%~指令速度× (100+PA29)%] 时,PSR 信号输出有效。	0~100
31	MII 通信节 点号	指定驱动器在MII 通信网络中的地址, 同一网络中的多个驱动器必须具有不同的节点 号。	1-30
34	内 部 CCW 转矩限制	设置伺服电机CCW 和CW 方向的内部转矩限制值,该值为额定扭矩的百分比;若设定值	0~300
35	内部 CW 转 矩限制	超过了驱动器允许的最大过载能力,则实际转矩限制即为驱动器所能输出的最大转矩。	-300~0
38	手 动 模 式 /JOG 模式运 行转矩限制	 设置在速度试运行、JOG运行方式下的转矩限制值。 与旋转方向无关,双向有效。 设置值是额定转矩的百分比,例如设定为额定转矩的 1 倍,则设置值为 100。 内外部转矩限制仍然有效。 	0~300
39	自动增益调 整行程限制	用于限制自动增益调整功能的电机旋转圈数的 范围,实际进行自动增益调整时不会超过 该设定值。	1~50
40	加速时间常数	● 设置值是表示电机从 0~1500rpm 的加速时间。 ● 加速特性是线性的。 ● 仅用于速度控制方式,位置控制方式无效。 ● 如果驱动器与外部位置环组合使用,此参数应设置为 0。	0~10000
41	减速时间常 数	● 设置值是表示电机从 1500~0rpm 的减速时间。 ● 减速特性是线性的。 ● 仅用于速度控制方式,位置控制方式无效。 ● 如果驱动器与外部位置环组合使用,此参数应设置为 0。	0~10000
47	电机停止时 机械制动器	● 定义电机停转期间从机械制动器动作 (输出端子 BRK 由 ON 变成 OFF) 到电	0~30000
	动作设定	机电流切断的延时时间。 ● 此参数不应小于机械制动的延迟时间 (Tb),以避免电机的微小位移或工件 跌落。 ● 相应时序参见图 7.5。	

48	电机运转时 机械制动器 动作设定	 定义电机运转期间从电机电流切断到机械制动作 (输出端子 BRK 由 ON 变成 OFF)的延时时间。 此参数是为了使电机从高速旋转状态减速为低速后,再使机械制动器动作,避免损坏制动器。 实际动作时间是 PA48或电机差减速到PA49数值所需时间,取两者中的最小值。 相应时序参见图 7.6。 	0~30000
49	电机运转时 机械制动器 动作速度	● 定义电机运转期间从电机电流切断到机械制动器动作 (输出端子 BRK 由ON 变成 OFF)的速度数值。 ● 实际动作时间是 PA48 或电机减速到 PA49 数值所需时间,取两者中的最小值。 ■ 相应时序参见图 7.5。	0~3000
59	零速信号输 出范围	当电机实际转速小于或等于该参数设定值时,零速信号 ZSP 输出有效。	0~100
82	内部使能	0: 伺服使能由 SON 控制;1: 伺服驱动器内部使能,与 SON 无关。	0~1
85	多摩川绝对 值编码器电 池报警开关	0: 禁止产生电池电压报警 1: 允许产生电池电压报警	0~1
86	IPM 过热报 警开关	0: 禁止产生 IPM 过热报警 1: 允许产生 IPM 过热报警	0~1
96	自动识别电 机型号使能	0: 禁止自动识别电机型号 1: 允许自动识别电机型号	0~1
97	数字量输入 1 信号指定	0: CCW 驱动禁止输入(FSTP) 1: CW 驱动禁止输入(RSTP)	0~3
98	数字量输入2 信号指定	2: 速度选择输入 1(SC1) 3: 速度选择输入 2(SC2)	0~3
99	数字量输出 1 信号指定	0: 机械制动器释放(BRK) 1: 伺服报警输出(ALM) 2: 伺服准备好输出(SRDY)	0~5
100	数字量输出 1 信号指定	 位置到达输出(POSR) 速度到达输出(SPDR) 零速输出(ZSP) 	0~5

第 5章 保护功能

5.1 报警一览表

报警 代码	报警名称	内容
	正常	无报警
1	超速	伺服电机速度超过设定值
2	主电路过压	主电路电源电压过高
3	主电路欠压	主电路电源电压过低
4	位置超差	位置偏差计数器的数值超过设定值
6	速度放大器饱和故障	速度调节器长时间饱和
7	驱动禁止异常	CCW、CW 驱动禁止输入都 OFF
8	位置偏差计数器溢出	位置偏差计数器的数值的绝对值超过 230
11	IPM 模块故障	IPM 模块故障
12	过电流	电机电流过大
13	制动时间过长	制动电路故障或电机长时间制动导致电压泵升时间过长
16	电机热过载	电机电热值超过设定值(I ² t 检测)
20	EEPROM 错误	从 EEPROM 中加载参数错误,读出值校验错误
23	电流采样故障	电机电流采样值异常
28	软件升级报警	软件版本变化,需要重新建立 EEPROM 数据
29	内部参数错误	PA240 参数设置错误
31	电机增量式编码器 UVW 状态错误报警	电机增量编码器 UVW 信号存在全高电平或全低电平,编码器线未连接或故障
32	电机增量式编码器 UVW 信号错误报警	电机增量编码器位置信号 UVW 连接异常
33	电机增量式编码器 ABZ 信 号错误报警	电机增量编码器位置信号 ABZ 连接异常

报警 代码	报警名称	内容
39	多摩川绝对值编码器读位 置错误	无法读出绝对值编码器的当前位置数据
45	多摩川绝对值编码器读取 校验错误	读取多摩川绝对值编码器时数据校验错误
46	多摩川绝对值编码器超速 报警	多摩川绝对值编码器超速报警
47	多摩川绝对值编码器单圈 分辨率错误	多摩川绝对值编码器上电时速度超过报警阈值
48	多摩川绝对值编码器单圈 计数错误	多摩川绝对值编码器计数错误
49	多摩川绝对值编码器多圈 信息错误	多摩川绝对值编码器多圈信息错误
50	多摩川绝对值编码器电池 电压低于 2.5V	多摩川绝对值编码器电池电压低于 2.5V
80	MII 通信初始化错误	MII 通信接口芯片初始化失败
81	MII 接收数据错误	MII 接收数据出现错误
82	MII 循环时间设置错误	MII 通信周期设置错误
83	MII 同步延迟	MII 同步信号延迟
85	MII 通信看门狗错误	MII 通信看门狗计数错误
101	多摩川绝对值编码器电池 电压警告	多摩川绝对值编码器电池电压低于 3.1V
102	多摩川绝对值编码器多圈 信息溢出	多摩川绝对值编码器多圈信息溢出
103	多摩川绝对值编码器过热	多摩川绝对值编码器温度过高
104	IPM 温度过高	IPM 温度过高
110	到达限位	检测到限位开关被触发

5.2 报警处理方法

表 5.2 报警处理方法

	As and As His As and the				
报警 代码	报警名称	原因	处理方法		
	超速	1、编码器反馈信号异常;		检查电机编码器及其信号线 连接情况或 PA1 设置错误。	
1		2、速度方式下,加/减速时间 常数设置太小,使速度超调量 过大;	增大加速时间 PA57 及减速时间 PA58。		
1	REXE	3、PA54(最高速度限制)设 置值太小;	按照电机铭牌正确设置 PA54 参数值。		
		4、位置指令电子齿轮比过大。	正确设置电子齿轮比。		
		1、制动电阻未连接或损坏;	检查制动电阻及其连接。		
2	主电路过压	2、制动电阻不匹配(阻值太大) 注意:制动电阻阻值越小,但 流过制动电路的电流越大,容易 损坏制动电路中的制动管;	A、更换阻值和功率匹配的制动电阻; B、根据使用情况降低启停频率; C、根据使用情况增加加、减速时间,速度方式调整 PA57、PA58。		
		3、供电电源电压不稳定;	检查供电电源。		
		4、内部制动电路损坏。	更换伺服单元。		
	主电路欠压	1、输入电源容量不够,导致 电压偏低;	检查电源容量及控制柜电气 部分。		
3		2、接通电源时出现,伺服单 元主回路未接入正常电压;	检查主回路电气控制部分。		
		3、伺服单元电源启动电路故障。	更换伺服单元。		
		1、位置指令电子齿轮比设置 过大;	检查电子齿轮比 PA29/PA30 的设置。		
4	位置超差	2、负载惯量较大,或转矩不 足;	A、增大伺服单元和电机功率; B、减轻负载。		

		3、电机编码器故障或编码器 线数设置错误:	检查电机编码器及其连接情况,检查 PA1 设置。
		4、电机 U、V、W 相序有误, 会伴随 Er-12 或 Er-27 报警; (适用于交流异步主轴伺服 电机)	任意调换两相。
		5、使用第二位置编码器时, 错误设置 PA 98,反馈信号异 常。	检查 PA98 的设置。
		6、位置环或速度环增益设置 太小 (参阅 PA15、PA16、 PA19);	调整速度环或位置环增益。
		7、位置超差有效范围设置太 小。	正确设置 PA32。
		1、电机力矩不够,或负载太重,导致电机长时间无法跟随速度指令稳定运行。	A 检查参数 PA1 是否正确,重 新调出电机默认参数; B 检查机械设备,确保机械装 置没有被阻滞。
6	速度放大器饱 和故障	2、UVW 三相相序接反。	正确连接 U、V、W 接线。
		3、电机默认参数不对,或电机特性太软。	核对 PA1 对应的电机型号代码,重新正确调出电机默认参数。
		4、电机或编码器异常。	更换主轴伺服电机。
7	驱动禁止异常	FSTP 和 RSTP 输入都断开	检查接线
8	位置偏差计数 器溢出	位置指令电子齿轮比设置过 大	检查 PA29、PA30 参数的设置。
11	伺服单元内部 IPM 模块故障	1、接通电源,伺服单元尚未 使能时出现,无法消除; A、伺服单元控制板故障; B、制动电阻接线端与地短路。	若为 A 原因则更换伺服单元;若为 B 原因则检查并正确连接制动电阻。
		2、接通电源,伺服单元尚未 使能时出现,重新上电可以消 除;	接地不良或外部干扰导致。检 查接地,查找干扰源,并远离 干扰源或做屏蔽处理。

23	电流采样故障	1、电流检测电路故障; 2、电流传感器损坏;	更换伺服单元。
20	EEPROM 错误	2、EEPROM 芯片或电路板故障。	更换伺服单元。
	电机热过载	1、上电时, 伺服单元加载 EEPROM 中的数据失败;	重新恢复电机默认参数
16		2、电机额定电流参数设置错 误。	按照电机铭牌正确设置驱动参数。
	制动时间过长	1、电机长时间重载运行	A、减轻负载; B、更换更大功率的驱动装置。
13		2、无制动电阻或制动电阻偏 大,制动过程中,能量无法及 时释放,造成内部直流电压的 升高。	连接正确的制动电阻。
		1、输入电源电压长时间过高;	接入满足伺服单元工作要求的电源。
		驱动器损坏	更换驱动器
12	过电流	接地不良 电机绝缘损坏	检查接地
		驱动器 UVW 之间短路	检查接线
		止时的指令加速速率过大;	减小负载惯量。
		B、负载惯量较大,启动、停	率;
		A、问版毕儿以直的电机纵队 参数错误:	石/B原因则加入指令的加、 减速度时间,降低指令加速速
		重新上电可以消除。 A、伺服单元设置的电机默认	电机默认参数操作; 若为B原因则加大指令的加、
		4、电机启动或停止时出现,	若为 A 原因则重新进行恢复
		B、伺服单元 IPM 模块损坏。 C、驱动单位电流采样回路断 开。	
		间短路;	
		短路,或 U、V、W 与 PE之	元。
		A、电机电源线 U、V、W间	若为B、C 原因则更换伺服单
		3、接通电源,伺服单元使能时出现,无法消除;	若为 A 原因则更换电机线或 更换电机;

	器 UVW 状态 错误报警	2、电机增量编码器故障	更换伺服电机。	
	电机增量编码	1、编码器信号线损坏/短路	检查编码器信号线。	
32	器 UVW 信号	2、编码器 UVW 信号损坏;	更换伺服电机。	
	错误报警	3、编码器接口电路故障。	更换伺服驱动器。	
	电机增量编码	1、编码器信号线损坏/短路	检查编码器信号线。	
33	器 UVW 信号	2、编码器 ABZ 信号损坏;	更换伺服电机。	
	错误报警	3、编码器接口电路故障。	更换伺服驱动器。	
	6 de 10 / 6 - 1 / 5	1、PA2 参数设置错误;	设置正确的编码器型号。	
39	多摩川绝对编码器通信超时	2、编码器信号线损坏或接触 不良;	检查编码器接线。	
	报警	3、编码器损坏。	更换伺服电机。	
45	多摩川绝对编 码器 CRC 校验 错误报警	传感器模式下,读编码器当前 位置数据校验错误。	检查接地。	
46	多摩川绝对式编码器超速	驱动单元断电期间,电机以 6000rpm 旋转;或电池电压低 于规定值 2.5V	执 行 Ab 操作,然后重新上电。	
47	多摩川绝对式 编码器单圈分 辨率错误	驱动单元上电时,电机大于 100rpm 的速度旋转。	将电机转速调节到 100rpm 以 下,然后重新上电。	
48	多摩川绝对式 编码器单圈计 数错误	编码器受干扰	执行Ab-rSE,然后重新上电。 对编码器接线实施抗干扰措 施	
49	多摩川绝对式 编码器多圈错 误	编码器受干扰	执行Ab-rSE,然后重新上电。 对编码器接线实施抗干扰措 施	
50	多摩川绝对式 编码器电池错 误	1、电池电压低于 2.5V	更换电池,执行 Ab-rSA,然后 重新上电。注意消除此报警 后,系统需要重新建立机床坐 标。	
		2、电机编码器与驱动器初次 连接	执行 Ab-rSA,然后重新上电。 注意消除此报警后,系统需要 重新建立机床坐标。	
80	MII 通信初始 化错误	MII 通信接口芯片初始化错误	更换伺服单元。	
81	MII 接收数据 错误	MII 通信受到干扰	检查MII 通信电缆,对接线实施抗干扰措施	

82	MII 循环时间 设置错误	驱动器不支持 MII 主站设置 的通信循环时间	驱动器支持的循环时间最小 单位为 ms, 支持 1~5ms
83	MII 同步延迟	MII 通信受到干扰	检查MII 通信电缆,对接线实施抗干扰措施
85	MII 通信看门 狗错误	MII 通信受到干扰	检查MII 通信电缆,对接线实施抗干扰措施
101	多摩川绝对值 编码器电池电 压警告	电池电压低于 3.1V	尽快更换编码器电池
102	多摩川绝对值 编码器多圈信 息溢出	多圈数据溢出,符号位发生跳 变	执行 Ab-rSE,然后重新上电
103	多摩川绝对值 编码器过热	编码器温度超过额定工作温 度	降温后执行 Ab-rSE,然后重新 上电
		驱动器工作于连续大负载状 况	改善工况,降级驱动器负载
104	IPM 温度过高	驱动器工作散热效果差	增加驱动器工作环境的空气 流通,增强散热效果
		散热面接触不好	返回厂家维修
110	到达限位	到达限位位置	注意限位开关被触发

第 6 章 显示与键盘操作

面板由 6 个 LED 数码管显示器和 4 个按键 ↑、 ↓、 Enter 组成,用来显示系统各种状态、设置参数等。操作是分层操作的, Enter 键表示层次的后退和前进,Enter 键有进入、确定的意义; ←键有退出、取消的意义; ↑、 ↓ 键表示增加、减少序号或数值大小。如果按下 ↑、 ↓ 键并保持,则具有重复效果,并且保持时间越长,重复速率越高。

如果 6个数码管或最左边两个数码管显示闪烁,表示发生报警。POW 指示灯点亮表示控制电路已通电,RUN 指示灯点亮表示电机正在运转。

6.1 第 1 层

第 1 层用来选择操作方式,共有 7 种方式,用 \uparrow 、 ↓ 键改变方式,按 Enter 键进入选定的方式的第 2 层,按 \leftarrow 键从第 2 层退回第 1 层。

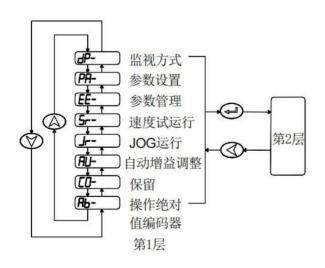


图 6.1 方式选择操作框图

6.2 第 2 层

6.2.1 监视方式

在第 1 层中"dp-",并按 Enter 键进入监视方式。共有 31 种显示状态,用户用用 \uparrow 、 \downarrow 键选择需要的显示模式,再按 Enter 键,就进入具体的显示状态了。

图 6.2 监视方式操作框图

- [注 1] 输入脉冲量为经过输入电子齿轮放大后的脉冲。
- [注 2] 脉冲量单位是系统内部脉冲单位,在本系统中 10000 脉冲/转。脉冲量用高 5 位+低 5 位表示,计算方法为:

脉冲量=高 5 位数值×100000+低 5 位数值

- [注 3] 控制方式: 0-位置控制; 1-速度控制; 2-速度试运行; 3-JOG 运行; 4-编码器调零: 5-开环运行。
- [注 4] 如果显示数字达到 6 位 (如显示器-12345),则不再显示提示字符。
- [注 5] 位置指令脉冲频率是在输入电子齿轮放大之前实际的脉冲频率,最小单位 0.1kHz,正转方向显示正数,反转方向显示负数。
- [注 6]表示相电流有效值。

6.2.2 参数设置

在第 1 层中选择"PA-",并按 Enter 键进入参数设置方式。用 $\uparrow \downarrow$ 键选择参数号,按 Ente 键,显示该参数的数值,用 $\uparrow \downarrow$ 键可以修改参数值。按 \uparrow 或 \downarrow 键一次,参数增加或减少 1,按下并保持 $\uparrow \downarrow$ 或 \downarrow 键,参数连续增加或减少。参数值被修改时,最左边的 LED 数码管小数点点亮,按 Enter 键确定修改数值有效,此时左边的 LED 数码管小数点熄灭,修改后的数值将立刻反应到控制中,此后按 \uparrow 或 \downarrow 键还可以继续修改参数。修改完毕按 \leftarrow 键退回到参数选择状态。如果对正在修改的数值不满意,不要按 Enter 键确定,可按 \leftarrow 键取消,参数恢复原值,并退回到参数选择状态。

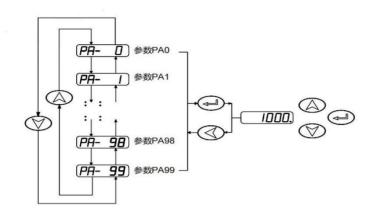


图 6.6 参数设置操作框图

6.2.3 参数管理

参数管理主要处理参数表与 EEPROM 之间操作,在第 1 层中选择 "EE-",并按 Enter 键进入参数管理方式。首先需要选择操作模式,共有 5 种模式,用 ↑、 ↓ 键来选择。以"参数写入"为例,选择"EE-SET",然后按下 Enter 键并保持 3 秒以上,显示器显示"StArt",表示参数正在写入 EEPROM,大约等待 1~2 秒的时间后,如果写操作成功,显示器显示"FINISH",如果失败,则显示"Error"。再按←键可退回到操作模式选择状态。

● **EE-SEt 参数写入**,表示将参数表中的参数写入 **EEPROM** 的参数区。 用户修改了参数,仅使参数表中参数值改变了,下次通电又会恢复成 原来的数值。如果想永久改变参数值,就需要执行参数写入操作,将 参数表中参数写入到 EEPROM 的参数区中,以后通电就会使用修改后的参数。

- **EE-dEF 恢复缺省值**,表示将与电机型号相关的参数缺省值(出厂值) 读到参数表中,并写入 **EEPROM** 的参数区中,下次上电将使用缺省参数。
- **EE-Ini 恢复出厂值,**表示将全部参数缺省值(出厂值)读到参数表中, 并写入 **EEPROM** 的参数区中,下次上电将使用缺省参数。

图 6.8 参数管理操作

6.2.4 速度试运行

在第 1 层选择 "Sr- ",并按 Enter 键就进入试运行方式。速度试运行提示符为 "S",数值单位是 r/min,系统处于速度控制方式,速度指令由按键提供,用 \uparrow 、 \downarrow 键可以改变速度指令,电机按给定的速度运行。

6.2.5 JOG 运行

在第1层中"Jr-",并按 ENTER 键进入 JOG 运行方式,即点动方式。JOG 运行提示符为"J",数值单位是 r/min,系统处于速度控制方式,速度指令由按键提供。进入 JOG 操作后,按下 ↑键并保持,电机按 JOG 速度运行,松开按键,电机停转,保持零速度;按下 ↓键并保持,电机按 JOG 速度反向运行,松开按键,电机停转,保持零速。JOG 速度由参数 PA21 设置。

图 6.10 JOG 运行操作框图

6.2.6 自动增益调整

注意:使用该操作前,必须确保电机能够在 CCW 和 CW 方向上旋转由 PA39 设定的圈数!

使用该操作前,应将PA6设置为 4。操作完成后,面板显示"FINISH",若需要保存自动调整后的参数,需要执行参数写入操作。

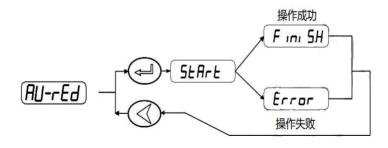


图 6.11 自动增益调整操作框

6.2.7 清除绝对值编码器报警

当驱动器出现 46/48/49/50/102/103 报警时,应当在确认编码器连接正常并且电池电压正常的情况下,执行 Ab-rSE 操作,以清除编码器内部锁存的报警;若需要同时清除编码器内部锁存的报警和多圈信息,则执行 Ab-rSA 操作。

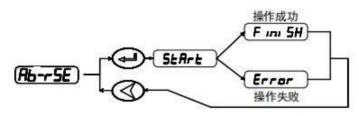


图 6.12 清除编码器报警操作框

第7章 规格

7.1 伺服驱动器规格

	1/1K-JE/J HH //				
输入口	 电源	三相 AC22	0V		
		-15%~+10%			
		50/60Hz			
/ -	温度	工作: 0~4	40° C 存贮: -40° C∼50° C		
使用	湿度	40%~80%	40%~80%(无结露)		
环境	大气压强	86~106kPa			
控制	方法	位置控制、	速度控制		
再生的	制动	内置			
	速度频率	≥250Hz			
	响应				
特	速度波动	<±0.03(负载0~100%); <±0.02(电源-15%~+10%)			
性	率	(数值对应于额定速度)			
	调速比	1:5000			
	脉冲频率	≤500kHz			
控制等	輸入	①CCW驱动禁止 ②CW驱动禁止			
		③速度选择1 ④速度选择2			
控制	输出	①机械制动输出 ②伺服报警输出 ③伺服准备好输			
		出 ④定位完成输出 ⑤速度到达输出 ⑥零速信号			
<i>(</i>)	lada da d	输入方式	Mechatrolink II		
位置	空制	电子齿轮	1~32767/1~32767		
		反馈脉冲 10000PPR/17位/23位			
速度控制		3种内部速度	变		
加减速功能		参数设置 1~10000ms / 1000r/min			
监视功能		转速、当前位置、指令脉冲积累、位置偏差、电机			

	转矩、电机电流、直线速度、转子绝对位置、指令
	脉冲频率、运行状态、输入输出端子信号等
保护功能	超速、主电源过压欠压、过流、过载、制动异常、
***	编码器异常、控制电源异常、位置超差等
适用负载惯量 小于电机惯量的5倍	

7.2 伺服代码参数与电机对照表

参数 PA1(型号代码)的设置值必须与采用的驱动器和电机匹配,参数 PA1 的设置值参见下表,如果不匹配会造成性能下降或出现报警。每种型号代码具有不同的缺省参数组合。装置在出厂时已经设置好相应的参数 PA1,并恢复成对应缺省参数组合。如果需要修改型号代码或需要恢复出厂的缺省参数组合,请参考附录 2 实施。

表 7.1 适 配 驱 动 器 的 电 机

型号	适配电机	炉切架 ※刑	额定功率	额定转矩	额定转速
代码		编码器类型	(kW)	(Nm)	(rpm)
1	60 -01330	多摩川 17/23 位	0.4	1.3	3000
2	60 -01930	多摩川 17/23 位	0.6	1.9	3000
3	80 -01330	多摩川 17/23 位	0.4	1.3	3000
4	80 -02430	多摩川 17/23 位	0.75	2.4	3000
5	80 -03520	多摩川 17/23 位	0.73	3.5	2000
6	80 -04025	多摩川 17/23 位	1.0	4.0	2500
7	90 -02430	多摩川 17/23 位	0.75	2.4	3000
8	90 -03520	多摩川 17/23 位	0.73	3.5	3000
9	90 -04025	多摩川 17/23 位	1.0	4.0	2500
10	110-02030	2500 线	0.6	2.0	2000
11	110-02030	多摩川 17/23 位	0.6	2.0	3000

15		2500 线			
16	110-04030	5000 线	1.2	4.0	3000
17		多摩川 17/23 位			
18		2500 线			
19	110-05030	5000 线	1.5	5.0	3000
20		多摩川 17/23 位			
24		2500 线			
25	110-06030	5000 线	1.8	6.0	3000
26		多摩川 17/23 位			
27		2500 线			
28	110-08025	5000 线	2.0	8.0	2500
29		多摩川 17/23 位			
30		2500 线			
31	130-04025	5000 线	1.0	4.0	2500
32		多摩川 17/23 位			
33		2500 线			
34	130-05025	5000 线	1.3	5.0	2500
35		多摩川 17/23 位			
36		2500 线			
37	130-06025	5000 线	1.5	6.0	2500
38		多摩川 17/23 位			
39		2500 线			
40	130-07725	5000 线	2.0	7.7	2500
41		多摩川 17/23 位			
42		2500 线			
43	130-10015	5000 线	1.5	10.0	1500
44		多摩川 17/23 位			
45	130-10025	2500 线	2.5	10.0	2500

46		5000线			
47		多摩川 17/23 位			
48		2500 线			
49	130-15015	5000线	2.3	15.0	1500
50		多摩川 17/23 位			
51		2500 线			
52	130-15025	5000 线	3.7	15.0	2500
53		多摩川 17/23 位			
54		2500 线			
55	130-20015	5000 线	3.0	20.0	1500
56		多摩川 17/23 位			
57	150-15020	2500 线	3.0	15.0	2000
58	150-15020	多摩川 17/23 位	3.0	13.0	2000
59	150-15025	2500 线	3.8	15.0	2500
60	150-15025	多摩川 17/23 位	3.6	13.0	2300
61	150-18020	2500 线	3.6	18.0	2000
62	130-18020	多摩川 17/23 位	3.0	16.0	2000
63	150-23020	2500 线	4.7	23.0	2000
64	130-23020	多摩川 17/23 位	7.7	23.0	2000
65	150-27020	2500 线	5.5	27.0	2000
66	130 27020	多摩川 17/23 位		27.0	2000
67	180-17015	2500 线	2.3	17.0	1500
68	100 17013	多摩川 17/23 位	2.3	17.0	1300
69	180-17215	2500 线	2.7	17.2	1500
70	100 1/213	多摩川 17/23 位			
71	180-19015	2500 线	3.0	19.0	1500
72	100-17013	多摩川 17/23 位	5.0	17.0	1500
73	180-21520	2500 线	4.5	21.5	2000
74	100-21320	多摩川 17/23 位	т.Ј	21.3	2000

75	180-27015	2500 线	4.3	27.0	1500
76	180-27013	多摩川 17/23 位	4.3	27.0	1300
77	190 25015	2500 线	5.5	25.0	1500
78	180-35015	多摩川 17/23 位	5.5	35.0	1500

7.3.1 电机端子

端子符号	端子序号	端子说明
U	2	电机U相电源输入
V	3	电机V相电源输入
W	4	电机W相电源输入
⊕	1	电机外壳接地端子

7. 3. 2 制动器

端子符号	端子序号	端子说明
DC+	1	制动器电源
DC-	2	
⊕	3	电机外壳接地端子

7.3.3 编码器

端子符号	端子序号	端子说明
5V	7	编码器5V电源输入
OV	5	
SD+	6	编码器数据+
SD-	4	编码器数据-
E+	3	电池+
E-	2	电池-
FG	1	编码器外壳

附录 常用操作指导

一 修改伺服驱动器型号与伺服电机型号匹配

步骤如下:

第一步: 检查驱动器的型号查出型号代码。特别注意驱动器的型号不要弄错, 否则将会导致驱动器损坏。以适配110ST-M04030配置多摩川绝对值编码器申机为例, 查表得到型号代码为 17。

第二步: 修改密码参数 PA0 为 385;

第三步:修改型号代码参数 PA1 为选定的型号代码,本例子为 17;

第四步:将参数缺省值写入 EEPROM。

在第 1 层中选择 "EE-",按Enter 键进入参数管理方式。首先需要选择操作模式,共有 3 种模式,用 1、 键来选择。选择 "EE-dEF",然后按下 Enter 键并保持大约 3 秒钟,显示器显示"Start",表示参数正在写入EEPROM,大约等待 1~2 秒的时间后,如果写操作成功,显示器显示"Finish",如果失败,则显示"Error"。

第五步: 关驱动器电源, 然后重新通电, 操作完成。

二 伺服驱动器强制使能设置

步骤如下:

第一步: 修改 PA82=1 强制使能。

第二步:将参数值写入 EEPROM。

在第 1 层中选择 "EE-",按Enter 键进入参数管理方式。首先需要选择操作模式,共有 3 种模式,用 ↑ 、 ↓ 键来选择。选择"EE-SET",然后按下 Enter 键并保持大约 3 秒钟,显示器显示"Start",表示参数正在

写入 EEPROM, 大约等待 $1\sim2$ 秒的时间后, 如果写操作成功, 显示器显示 "Finish", 如果失败, 则显示"Error"。

第三步: 关驱动器电源, 然后重新通电, 操作完成。