PC2C 应用程序入门

华中科大仪博生命科学仪器有限公司

- 地址:武汉市洪山区珞瑜路 1137 号华中科技大学内
- 邮政编码:430074
- 电话:027-87548911 027-87464502
- 传真:027-87548911
- 网址:<u>http://www.yibo.cn</u>
- Email: inbio@inbio.com.cn

Rev.1

目录

1	安装	1
	1.1 安装 PC2C 软件	1
	1.2 连接 PC2C 信号电缆	2
	1.3 进入 IBBCLAMP 程序	2
	1.4 系统软件功能测试	3
2	2. 膜片钳实验软件应用入门	6
	2.1 单通道记录	6
	2.2 全细胞记录	8
	2.3 漏电流减除	10

1 安装

1.1 安装 PC2C 软件

1. 关闭计算机,打开机箱,将 ACL-8312 卡安装于空闲的 EISA 插槽内。

2. 打开计算机,将光盘插入光驱,找到并执行 setup.exe 程序,安装 IBBCLAMP 软件, 它会自动设置硬件接口卡的中断请求号(IRQ)和 I/O 地址。

注意:安装时,请在"控制面板"中的"系统选项"中,先点击"设备管理器",然后选择"属性",再选择"查看资源",检查计算机的中断请求 5 和 I/O 地址 220 是否为空闲,参见图 1.1 和图 1.2。它们是 ACL-8312 接口卡在计算机中所占资源,如果被其他硬件占用,则 IBBCLAMP 软件不能够正常工作。解决办法是请将相应的硬件移到别的中断端口和地址去,并用"保留资源"的命令将这两个资源保留起来,参见图 1.3。

图 1.1

• 中断请求 α Γ 输入/输出 (149) (B) C 直接内存访 1/0) (D) C 内存(M)	(Ē) (DMA) (D)
设置		
	添加(4)]	發达型【 <u></u> 一册除型)
编辑资源	设置	? × 取消
	要保留的中断号。	
请输入		
请输入: 值(V):		

图 1.3

1.2 连接 PC2C 信号电缆

在电源关闭的条件下,将附带的连接电缆 37 线插头一端接计算机中的接口卡,另一端带红色标记的 Q9 插头接 PC2C 的 CURRENT MONITOR 插座,带黄色标记的 Q9 插头接 VOLTAGE MONITOR 插座,不带标记的 Q9 插头接 STIM. IN 插座。

1.3 进入 IBBCLAMP 程序

将 PC2C 放大器主机连接 220V 交流电源。打开电源开关,从程序组中执行 IBBCLAMP, 如果硬件接口卡安装正确,则会弹出对话框,如图 1.4 所示。

图 1.4

如果接口卡或程序安装不正确,则会弹出对话框如图 1.5 所示。这时,请按 1.1 节"注意" 所述修改硬件资源。

图 1.5

1.4 系统软件功能测试

1. 进入 IBBCLAMP 程序后,将屏幕上 Control 面板中的实验类型选定为"电压钳",测 量增益选定为 1mV/pA,刺激衰减选定为 0.02,系统 holding 选择为 0mV。同时将 PC2C 面 板上的模式选择拨向 VC,GAIN 设定为 1mV/pA,STIMULUS SCALING 设定为 0.02, HOLDING COMMAND 设为 0mV。用鼠标按下屏幕上的封接测试(Ω 的符号)的按钮,软件 将给予 + 5mV 或+10mV 的电压(可以自由调整)刺激信号。

Control 面板上的参数请与 PC2C 主机前面板的相应参数对应 电压钳=VC 测量增益=GAIN 刺激衰减= STIMULUS SCALING 系统 holding 控制探头的钳位电压,可以通过数字显示表显示出来

图 1.6

注意:调节屏幕上控制面板中的各项选择时,必须与 PC2C 面板的控制旋钮和开关一起 联动调整,否则记录的信号也会发生错误。

2. 将探头与细胞模型电路通过一个 Q9 plug to plug 适配器连接,并将 1mm 插头插入探 头的 GND 插孔。

注意:避免直接接触探头的输入端,因为静电可能会损害探头的输入电路。如果必须接触探头(例如插入玻璃微电极到电极加持器时),请首先接触接地良好的金属表面来消除操作 者本身所带的静电。在气候非常干燥的地区,最好戴一枚接地镯。

细胞模型的电路如图 1.7 所示。

细胞模型的开关有三档,分为10MΩ、Cin和0.5GΩ。

3. 将细胞模型的开关开关拨到 10MΩ档时,电路模拟电极进入浴池溶液时情况。在 SEARCH 方式下,可以检验电流的自动归零操作;在 VC 条件下,调节 PIPTTE OFFSET, 使电流回到基线,这时可以观察到方波电流信号,如图 1.8 所示。

图 1.8

4. 当开关的位置位于C_{in}时,细胞模型电路内接 4.7pF电容,此时电路模拟了GΩ(吉欧) 封接的情况,出现电容性尖峰电流。将PC2C主机面板上的GAIN调整为 100mV/pA,同时将 IBBCLAMP软件的Control面板上的测量增益部分也相应调整到 100mV/pA的位置。 仔细调 节C-FAST可消除刺激脉冲引起的电容性尖峰电流 此时C-FAST的补偿值应该位于 7pF附近, 参见图 1.9。补偿电容之所以比实际内接电容大,是因为电路中存在着分布电容。

注意:由于内部开关较差的介电特性,模型电路会产生高于实际吉欧封接情况下的随机 噪声。

5. 将 PC2C 和屏幕控制面板相应的测量增益部分调整到 1mV/pA 的位置。PC2C 探头内接 0.5GΩ测量电阻,此时模拟吸破后形成全细胞模式时的状态,出现了较大的电容性冲放电电流尖峰。调整仪器面板上的 C-SLOW 和 G-SERIES,将电流尖峰降至最低,并可以读出慢电容和串联电阻值(C-SLOW 为 22pF 左右,G-SERIES 为 0.2µS 左右)。在 CC+COMM 方式下可以进行电流钳操作。注意,这个"细胞模型"有一个较长的"膜时间常数"(大约 10ms)。

图 1.10

经过上述测试后,即可以证明所装入的软件工作正常,且该 PC2C 膜片钳放大器主机也工作正常,可以完成封接、快慢电容补偿等一系列的实验。

2 膜片钳实验软件应用入门

膜片钳实验步骤和方法在 PC2C 膜片钳放大器使用手册中已有较详细的介绍,本章着重讨论膜片钳实验中应用 IBBCLAMP 软件用计算机记录数据的方法。

2.1 单通道记录

IBBCLAMP 软件记录时,所有的数据以.abf 的文件格式存储在硬盘上(.abf 的格式即是 Axon Binary Format, Axon 公司的膜片钳数据格式)。

单通道记录时,常常使用的记录模式是 Gap-Free Mode (无间隙模式),如图 2.3 所示。 该模式为被动模式,被动地记录数据或被动地等待触发事件引起记录,适合于记录单通道膜 片钳数据或联合检测数据,在整个时间段上有统一的记录行为。此模式类似于磁带记录仪, 进行连续采集数据,且所有数据均显示在屏幕上。如果需要存盘,则所有数据均存盘,用户 只需指定采样率和记录长度。图 2.1 到 2.5 显示了单通道记录的完整过程。概括起来有如下 几个步骤:

- 1. 新建一个参数文件;
- 2. 编辑参数文件;
- 3. 选择 Gap-free mode 记录方式;
- 4. 按下"观察"按钮"▶",记录单通道电流;
- 5. 记录结束时,按下"停止"按钮;
- 6. 保存数据文件。

💒 clp1603	7实际运行	方式(3	鐵文機	件目录	C:\PR	OLXL\)	(数据文件目录:c:\hust_ibb\
文件 编辑	参数	观察	设置	工具	窗口	帮助	
1	し指	定参数び	2件目3	录			
-# 🚅	した して が が が が	参数文件 开参数5	ŧ 文件	2			
Control 面		日空致し 参数文作 積参数び	<日 特牙存注 (件	劮			件:-120IV.PRO) (数据文件 m
突验类型		用数据了	で件中的	的参数	信息进	行实验	

图 2.1 新建一个参数文件

图 2.2 编辑参数文件

模式	
riable-length events xed-length events	C High-speed oscilloscope
被动方式	主动方式
Sampling	
Sampling 采样间隔(us) 200 🗬 = 采集诵道教=1 教展冒为 50	5000Hz Осат (0.57MB/Min)
Sampling 采样间隔(us) <mark>200 </mark> = 采集通道数=1 数据量为 50	5000Hz Olgz (0.57MB/Mir.)
Sampling 采样间隔(us) <mark>200 </mark> = 采集通道数=1 数据量为 50	5000Hz Olgz (0.57MB/Min)
Sampling 采样间隔(us) 200 🗬 = 采集通道数=1 数据量为 50	5000Hz Olğt (0.57MB/Min)
Sampling 采样间隔(us) 200 🚔 = 采集通道数=1 数据量为 50	5000Hz Olýz (0.57MB/Min)

图 2.3 选择 Gap-free mode 记录方式

文件编辑参数	观察 设置	工具 窗口	帮助	
100 🖓 🖏 🖸	6		🚟 🖬 🍳	上 [2] [2]
# 1	B	Ωġ	0 • 🕨	
Control面板 🛛 🔀	🕌 (显示:)准	备釆集数据)	(参数文件:RECOV.PI	<mark>观察</mark> 、数据文件:)
	■重叠显示	新業業 在	标 Zoom	
实验类型	100 100 100 100	<u> </u>	V1	V2
电压钳 🗾				
测量增益(mV/pA)				
100 💌				
東駿衰減	50			
0.02 💌				
系统Holding(mV)				
0				

图 2.4 按下"观察"按钮"▶",记录膜片保持电位为 0mV 的单通道电流; 当记录结束时,按下"停止"按钮"

图 2.5 用菜单上的命令保存数据文件

2.2 全细胞记录

全细胞记录时,常常使用的记录模式是 Episodic Stimulation Mode (间断刺激模式),如 图 2.6 所示。该模式为主动模式,使用它可以给实验提供刺激,同时以固定长度段(sweeps) 显示和记录细胞对刺激的响应。典型应用为全细胞电流/电压响应测量,程序设置和记录过 程如图 2.6~2.9 所示。主要过程如下。

1. 在"采样模式"栏中点击"Episodic Stimulation", 以选择 Episodic Stimulation Mode 记录方式, 见图 2.6。

Variable-length events Fived-length events	○Gap-free
实验层次 Runs/trial: 1 Sweeps/run: 11 Samples/sweep/signal 3000 信号采样间隔 采样间隔(us) 100 章=10000Hz	
可用硬盘空间为 =1882MB.	采集通道数=1 数据量为(1.14MB/Min) 实验类型: 电压钳

图 2.6 选择 Episodic Stimulation Mode 记录方式

2. 在"波形编辑"栏中编辑刺激波形,见图 2.7。该图数据显示为一典型的全细胞记录

刺激波形的编辑结果,可产生通道电流的 I-V 曲线。其中,细胞内的保持电位为–70mV。刺激电压脉冲从–60mV 开始,以 10mV 递增,直到+40mV,刺激时间为 100ms。

Sweep之间的电平 使用系统holding										
Epoch 束墩文件										
	A	В	С	D	E	F	G	Н	I	J
波形形状	Step	Step	Step	Off						
First_Sweep电平(mV)	-70	-60	-70	0	0	0	0	0	0	0
増量电平 (mV)	0	10	0	0	0	0	0	0	0	0
Final_Sweep电平(mV)	-70	40	-70	0	0	0	0	0	0	0
First_Sweep持续长度(samples)	500	1000	500	0	0	0	0	0	0	0
First_Sweep持续长度(ms)	50	100	50	0	0	0	0	0	0	0
增量持续长度(samples)	0	0	0	0	0	0	0	0	0	0
增量持续长度(ms)	0	0	0	0	0	0	0	0	0	0
Final_Sweep持续长度(samples)	500	1000	500	0	0	0	0	0	0	0
Final_Sweep持续长度(ms)	50	100	50	0	0	0	0	0	0	0
TTL输出(#3-0)	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
总禾样点数 首保持点数 可分配点数 已分配点数 未分配点数 尾保持点数 3000 50 2300 2000 900 50 清除网格 東駿衰減 最大東駿电平值 (mV) 最大顶A输出值 (V) 600 50 70										

图 2.7 编辑刺激波形

3. 在"刺激处理"栏设置 P/n 算法,消除漏电流和电容性电流伪迹,见图 2.8。有关 P/n 算法的论述请参见" Single-Channel Recording(2nd ed. ,B. Sakmann & E. Neher, eds.) "pp76~77 和有关论文 (Armstrong & Bezanilla, 1974)及 2.3 节的简要说明。

参数编辑			×
● 采样模式 → 信号输入 → 信号输出 → 触发 →		数学运算)波形编辑》,现象处理。	波形预览)
P/N Leak Subtraction			
Apply to Analog IN signal: 0 Number of Sub-sweeps Sub-sweep Holding Level (mV): 100	Execution C Before C After	Polarity © Same as Waveform © Opposite to Waveform	

图 2.8 选择 P/n 算法消除漏电流和电容性电流伪迹

4. 进入记录的界面,预览刺激波形,如图 2.9 所示。

5.按 PC2C 使用手册所述,开始全细胞膜片钳实验,数据记录、存储等操作与 2.1 节中单通道记录相同。

图 2.9 进入记录界面预览刺激波形

2.3 漏电流减除

全细胞膜片钳实验记录中总会存在或大或小的漏电流,这时记录到的电流波形实际为通 道电流与漏电流的迭加。只要它不超过一定限度且维持稳定,便可用漏电流减除法(Leak Substraction)来消除。它的基本思路如下:细胞膜电位处于超极化状态时,所有的离子通道 都处于关闭状态;利用这一特性,在正常的刺激脉冲之前或其后,施加一系列在超极化电平 之内的小幅度脉冲对漏电流进行检测,然后在数据处理时,将漏电流从正常刺激所产生的膜 电流中减除。这种方法不但可以消除膜电导漏电流,而且还可以消除快、慢电容未完全补偿 的部分,习惯上将其称为P/n法。图2.10是在正常刺激脉冲P之前加入漏电流测试脉冲P₁~P₄的 实际波形,图中,所有脉冲的宽度都是相等的。

当不考虑膜通道电流时,全细胞构型的等效电路为线性无源网络。幅度为 ΔP 的刺激脉 冲产生的变化电流 $\Delta I_{\rm P}$ 与 n_2 个幅度均为 $\Delta P/n_1$ 的脉冲产生的变化电流 $\Delta I_{\rm Pi}$ ($i = 1, ..., n_2$)满足 线性关系,即

$$\Delta I_{\mathrm{P}_i} = \frac{\Delta I_{\mathrm{P}}}{n_1}$$

若考虑膜通道电流,施加刺激脉冲P所产生的电流变化 $\Delta I'_{p}$ 为通道电流 I_{ch} 和漏电流变化 ΔI_{Leak} 之和,而 ΔI_{Leak} 应当等于 ΔI_{P} ,即

$$\Delta I'_{\rm P} = I_{\rm ch} + \Delta I_{\rm Leak}$$

$$\Delta I_{\text{Leak}} = \Delta I_{\text{P}}$$

若将n2次测试漏电流求和,则

$$\Delta I_{\text{sum}} = \sum_{i=1}^{n_2} \Delta I_{\text{P}i} = \frac{n_2}{n_1} \Delta I_{\text{P}} = \frac{n_2}{n_1} \Delta I_{\text{Leak}}$$

于是得到

$$I_{\rm ch} = \Delta I'_{\rm P} - \Delta I_{\rm Leak} = \Delta I'_{\rm P} - \frac{n_1}{n_2} \Delta I_{\rm sum}$$

为了简化计算,一般取 $n = n_1 = n_2$ 。实验中,在正式刺激脉冲到来之前或之后,将膜电 位钳制在使细胞膜超级化的电平 V_{hyper} 上。 V_{hyper} 与n要满足当膜电位为($V_{hyper}+\Delta P/n$)时没有 任何离子通道被激活的条件。根据正式刺激脉冲的幅值 ΔP ,以 V_{hyper} 为基线施加n次幅值为 $\Delta P/n$ 的脉冲电压,然后测量计算出 ΔI_{sum} 。从正式刺激时记录到的电流 $\Delta I'_{p}$ 中减去 ΔI_{sum} 即可得 到真正的离子通道电流分量。由于 ΔI_{sum} 是 $P_1 \sim P_n$ 各脉冲持续时间内各相应记录电流采样点的 分别求和,所以得到的是一段 ΔI_{sum} 电流曲线,当然也包含由于膜电容产生的漏电流。只要 正式刺激脉冲 ΔP 产生的记录电流 $\Delta I'_{p}$ 保持在放大器的线性范围内,任何漏电流伪差都可用

P/n法消除,包括膜电容充电的伪差电流。这里,PC2C膜片钳放大器中的快、慢电容补偿操 作仍是必不可少的,它可以避免因强大的瞬态充电电流使放大器进入非线性状态,从而保证 "事后"P/n法补偿的线性要求。同时也可以看出,实验中采用P/n法,如果不考虑串联电阻 补偿的稳定性,对快、慢电容的补偿可作不太严格的要求,只要将测量电流信号调整到线性 放大范围内即可,标志是记录过程中PC2C面板上的过载指示灯(OVERLOAD)始终保持熄 灭状态,该指示灯一旦发光,应用P/n法就有可能得到错误的结果。

IBBCLAMP软件已具备P/n法漏电流减除功能,其设置如图2.8所示。用鼠标点击"刺激 处理"菜单中的P/N leak subtraction方框,方框中出现"√"号即激活此项功能。菜单中的各项 参数是:

sub-sweep holding level 为V_{hyper}设置;

number of sub-sweep 确定P/n算法中n的取值,即测试脉冲 $\Delta P/n$ 的个数。

Execution(before/after) 确定测试脉冲 $\Delta P/n$ 施加在正式刺激之前还是之后;

Polarity 表示施加的测试脉冲 $\Delta P/n$ 的电压变化方向是与正式刺激脉冲的电压变化方向 相同还是相反。

一次实验完成后,立即选择"观察"菜单下"P/N 修正后的采集波形"的选项,可以看 到用 P/n 算法去除漏电流后的电流信号。

注意:一般记录时,仅仅保存未经 P/n 处理的电流记录。如果想要保存经 P/n 处理后的

记录,请先选择"观察"菜单下的"PN 修正后的采集波形"的选项,看到用 P/n 算法去除漏电流的信号后,再用"自动命名保存 ABF 数据文件"或是"用户命名保存 ABF 数据文件"的命令 来保存 P/n 处理后的数据文件。